期刊文献+

金属锌高温氧化制备四针状氧化锌晶须 被引量:3

Preparation of Tetrapod Zinc Oxide Whiskers by Oxidating Metallic Zincat High Temperature
下载PDF
导出
摘要 通过研究金属锌高温氧化产物的形貌特征,进一步了解四针状氧化锌晶须的形成机理。以金属锌锭为原料,浇铸成重10~50g的小锌块,装入氧化铝坩埚中,在马弗炉内从室温加热至1000~1250℃,将金属锌蒸发氧化,获得氧化锌产物。实验分析了金属锌块用量、保温温度对氧化锌形貌的影响。X-射线衍射测定显示,产物为六方纤锌矿结构的氧化锌。用扫描电子显微镜(SEM)比较分析了不同实验条件下产物的形貌,当保温温度1200℃,金属锌用量分别为20g、30g时,产物为较均匀的四针状氧化锌晶须(T-ZnOw)。分析结果表明,T-ZnOw的生长由晶核的形成和针状体晶须的长大两个阶段组成,调控锌蒸气的产生和氧化过程,可获得形貌为T-ZnOw的氧化锌产物。 Characteristic analysis of ZnO products synthesized by oxidating metallic zinc at high temperature was performed to clarify the formation mechanism of tetrapod ZnO whiskers.Pure zinc ingot was first cast into small zinc slab of 10~50g and then was heated in an alumina crucible in a muffle furnace from room temperature to 1000~1250℃,where the zinc slab was vaporized and oxidized into zinc oxide.The effects of zinc amount and temperature on the morphology of zinc oxide were investigated.The ZnO products were confirmed to be zinc oxide with a hexagonal wurtzite structure by X-ray diffractometry(XRD).Scanning electronic microscopy(SEM) indicated that the ZnO products had the tetrapod-shaped morphology when the amounts of the used zinc slab were 20g and 30g,respectively.As a result,growth of T-ZnOw comprises the formation of nuclei and the growth of needle-like whiskers.Therefore,ZnO product with tetrapod-shaped morphology can be synthesized by controlling the evaporation and oxidation process of zinc.
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2010年第5期743-747,共5页 Journal of Materials Science and Engineering
基金 国家自然科学基金资助项目(50774014) 国家高技术研究发展计划资助项目(2008AA03Z514)
关键词 锌块 氧化锌 晶须 形貌 zinc slab zinc oxide whisker morphology
  • 相关文献

参考文献23

  • 1OzgurU., Alivov Ya. I., Liu C., et al. A comprehensive review of ZnO materials and devices[J]. Journal of Applied Physics, 2005, 98: 041301.1-041301. 103.
  • 2Wan Q. , Wang T. H. , Zhao J. C. Enhanced photocatalytie activity of ZnO nanotetrapods[J]. Applied Physics Letters, 2005, 8,7(8): 083105.1-083105.3.
  • 3Cao M. S. , Zhou W. , Shi X. L. , et al. Dynamic response and reinforcement mechanism of composites embedded with tetraneedlelike ZnO nanowhiskers[J]. Applied Physics Letters, 2007, 91(2) : 021912.1-021912.3.
  • 4Chu Xiangfeng, Jiang Dongti, Aleksandra B. Djurise, et al. Gas-sensing properties of thick film based on ZnO nano-tetrapods [J]. Chemical Physics Letters, 2005, 401(4-6): 426-429.
  • 5郭岚,傅敏恭,万益群,钟己未.四针状氧化锌晶须的制备及其吸波性能的研究[J].无机化学学报,2007,23(7):1251-1254. 被引量:15
  • 6Wang Zhong Lin. Nanostructures of zinc oxide[J].Meterials today, 2004, 7(6):26-33.
  • 7Zheng K. , Xu C. X. , Zhua G. P. , et al. Formation of tetrapod and multipod ZnO whiskers[J]. Physica E: Low-dimensional Systems and Nanostructures, 2008, 40(8) :2677-2681.
  • 8Wang Fei fei, Cao Li, Pan Anlian, et al. Synthesis of Tower- like ZnO Structures and Visible Photolumineseence Origins of Varied-Shaped ZnO Nanostruetures[J].J. Phys. Chem. C, 2007, 111(21) :7655-7660.
  • 9Xu C. X. , Sun X. W.. Multipod zinc oxide nanowhiskers[J]. Journal of Crystal Growth, 2005, 277(144) :330-334.
  • 10Yu Weidong, Li Xiaomin, Gao Xiangdong. Catalytic Synthesis and Structural Characteristics of High-Quality Tetrapod-Like ZnO Nanocrystals by a Modified Vapor Transport Process[J]. Crystal Growth & Design, 2005, 5(1)151-155.

二级参考文献52

共引文献23

同被引文献21

  • 1解挺,焦明华,俞建卫,吴玉程,张立德.准一维纳米材料制备方法的研究现状和发展趋势[J].材料科学与工程学报,2006,24(2):311-315. 被引量:18
  • 2曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究[J].环境科学学报,2006,26(8):1252-1257. 被引量:66
  • 3梁鹏,范明志,曹效鑫,黄霞,王诚.微生物燃料电池表观内阻的构成和测量[J].环境科学,2007,28(8):1894-1898. 被引量:118
  • 4Rulkens W. Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options [J ]. Energy Fuels, 2008, 22 (1) : 9-15.
  • 5Logan B E. Feature article: Biologically extracting energy from wastewater: biohydrogen production and microbial fuel cells[J]. Environmental Science & Technology, 2004, 38(9): 160-167.
  • 6He ziming, Liu Jing, Qiao Yan, et al. Architecture engineering of hierarchically porous ehitosan/vacuum- stripped graphene scaffold as bioanode for high performance microbial fuel cell [J]. American Chemieal Society, 2012, 12(9) : 4738-4741.
  • 7Avouris P, Hertel T, Mertel R, et al. Carbon nanotubes: Nanomeebanics, manipulation, and electronic devices [J]. Applied Surface Science, 1999, 141(3-4) : 201- 209.
  • 8Zou Yongjin, Xiang Cuili, Yang Lini, et al. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material[J]. International Journal of Hydrogen Energy, 2008, 33 (18) : 4856-4862.
  • 9Qiao Yan, Li Changming, Bao Shujuan, et al. Carbon nanotubc/polyaniline composite as anode material for microbial fuel cell [J]. Journal of Power Sources, 2007, 170( 1 ) : 79-84.
  • 10Tushar S, Reddy A L M, Chandra T S, et al. Development of carbon nanotubes and nanofluids based microbial fuel cell [J]. International Journal of Hydrogen Energy, 2008, 33(22): 6749-6754.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部