摘要
Poincare截面是反映经典系统是否达到混沌的有力手段,无规矩阵理论被看成是显示量子系统规则运动与不规则运动特征的有效方法.那么,当一个经典相点在混沌体系的某一能量面E0上的不变环面被全部破坏后,与这一相点所对应的中心能量E0等于E0的相干态波包在它所占据的量子系统的子空间中有何表现呢?以原子核Lipkin模型为例,用重整化约化方法,对SU(3)群的广义相干态所占据的量子子空间进行了约化后对其中有关量的随机性作了考察,结果表明,在这样的等效子空间内能级间距的涨落,等效哈密顿量的矩阵元以及从可积体系的子空间到这一等效子空间的一一映射的矩阵元的分布均与无规矩阵理论的预言相符合。
Abstract It is
well known that all torus are destroyed in the Poincare′ section with a certain energy E 0
when a classical system is in completely chaotic state.But in its quantum counterpart,the
features of the subspace taken up by a coherent state with central energy 0=E 0 is not yet
clear.In the present paper,taking nuclear Lipkin model as an example,we study the properties of
such a subspace taken up by the coherent state of SU(3) group.An effective subspace is
obtained by using a new renormalization approach.Our results show that in such an effective
subspace the distribution of the nearest level spacings,the elements of effective Hamiltonian
matrix,and the one to one correspondent map from the subspace of an integrable system to that
of nonintegrable one are all consistent with predictions of random matrix theory.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
1999年第5期769-774,共6页
Acta Physica Sinica