摘要
对应于混沌振子的各个Lyapunov指数,在切空间中定义了广义相位和广义旋转数.广义旋转数和Lyapunov指数相结合,可以更完整地描述混沌吸引子的各个运动模式的运动特征,包括伸缩与旋转.用耦合Dufing振子研究了时空混沌系统在同步混沌失稳时发生的分岔行为.结果表明,耦合振子的同步混沌态可以发生一种Hopf分岔,在Hopf分岔后,系统的功率谱中出现了一个特征频率,其值恰好等于分岔前临界横模的广义旋转数.
Abstract In
describing various modes of chaotic oscillators,generalized winding numbers are defined in
tangent space corresponding to Lyapunov exponents of the chaotic attractor.Bifurcation
behaviors from synchronous chaos of coupled Duffing oscillators are investigated using these
concepts.The results show that a kind of Hopf bifurcation can take place from the synchronous
chaotic state.Analysis of power spectrum indicates that the characteristic frequency created by
the Hopf bifurcation is equal to the generalized winding number of the critical transverse modes
just before the bifurcation.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
1999年第5期787-794,共8页
Acta Physica Sinica
基金
国家自然科学基金
吉林省教委科学基金