期刊文献+

基于人工蜂群的模糊聚类算法 被引量:6

Fuzzy clustering algorithm based on artificial bee colony
下载PDF
导出
摘要 针对模糊C-均值(FCM)聚类算法存在容易陷入局部极小值、对初始值和噪声数据敏感的缺点,提出一种基于人工蜂群(ABC)的模糊聚类算法(ABFM).该算法引入全局寻优能力强的人工蜂群算法来求得最优解作为FCM算法的初始聚类中心,然后利用FCM算法优化初始聚类中心,最后求得全局最优解,从而有效克服了FCM算法的缺点.实验结果表明,新算法与FCM聚类算法相比,提高了算法的寻优能力,并且迭代次数更少,收敛速度更快,聚类效果更好. Aimed at the problems such as the ready occurrence of local minimum with the fuzzy C-means(FCM)clustering algorithm and its sensitivity to initial value and noise data,an artificial bee colony(ABC)-based fuzzy algorithm(ABFM) was put forward.In this algorithm,the optimal solution obtained with ABC algorithm with strong global searching ability was taken as initial clustering-centers of FCM algorithm to optimize initial clustering-centers,so as to get the global optimum and overcome the shortcoming of the FCM algorithm.It was shown by experimental result that compared with the FCM clustering algorithm,the new algorithm could improve the optimum searching ability of the algorithm,the number of iterations would be less,the convergence speed faster,and the clustering efficiency better.
出处 《兰州理工大学学报》 CAS 北大核心 2010年第5期79-82,共4页 Journal of Lanzhou University of Technology
基金 甘肃省科技支撑计划项目(090GKCA034) 甘肃省自然科学基金(0916RJZA017) 甘肃省工业过程先进控制重点实验室基金(XJK0907)
关键词 模糊C-均值聚类 人工蜂群 数据挖掘 fuzzy C-mean clustering artificial bee colony data mining
  • 相关文献

参考文献9

二级参考文献43

  • 1杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:192
  • 2高尚,杨静宇.一种新的基于粒子群算法的聚类方法[J].南京航空航天大学学报,2006,38(B07):62-65. 被引量:12
  • 3冯征,阎敏,张智峰.一种基于PSO的模糊聚类算法[J].计算机工程与应用,2006,42(27):150-151. 被引量:9
  • 4HanJ KamberM.数据挖掘概念与技术[M].北京:机械工业出版社,2002..
  • 5Han J W, Kamber M. Data Mining: Concepts and Techniques [ M]. San Fransisco: Morgan Kaufmann Publishers, 2001.
  • 6Kennedy J, Eberbart R C, Shi Y. Swarm Intelligence [ M ]. San Francisco: Morgan Kaufman Publisher, 2001.
  • 7Klarreieh E. Inspired by immunity [ J ]. Nature, 2002, 415(31 ) :468-470.
  • 8Hart E, Timmis J. Application areas of AIS: The past, the present and the future [ J ]. Applied Soft Computing, 2008, 8(1): 191-201.
  • 9De Castro L N, Von Zuben F J. An evolutionary immune network for data clustering [ C ] //Proceeding of the IEEE Brazilian Symposium on Artificial Neural Networks, Rio de Janeiro, Brazil, 2000: 84-89.
  • 10Neal M. Meta-stable memory in an artificial immune network [ C ] //Proceeding of Second International Conference Artificial Immune Systems , Edinburgh, UK, 2003: 168- 181.

共引文献81

同被引文献52

  • 1况夯,罗军.基于遗传FCM算法的文本聚类[J].计算机应用,2009,29(2):558-560. 被引量:5
  • 2李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报,2006,38(8):1216-1218. 被引量:60
  • 3武妍,包建军.一种新的求解TSP的混合量子进化算法[J].计算机应用,2006,26(10):2433-2436. 被引量:6
  • 4韩琳,贺兴时.基于免疫粒子群优化的模糊C均值聚类算法[J].西安工程科技学院学报,2007,21(3):355-361. 被引量:4
  • 5DudaRO,eta1.李宏东等译.模式分类(原书第2版).北京:机械工业出版社,2010.
  • 6Karaboga D. An idea based on honey bee swarm for numerical optimization. Erciyes: Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  • 7Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony(ABC) algorithm Journal of Global Optimization, 2007,39(3):459-171.
  • 8HANK H, KIM J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization [ J]. IEEE Transactions on Evo- lutionary Computation, 2002, 6(6): 580-593.
  • 9KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony algorithm [J]. Journal of Global Optimization, 2007, 39(3): 459-471.
  • 10GAO HONGYUAN, YU XUEMEI, CAO JINLONG. Direction find- ing of maximum likelihood algorithm using quantum bee colony for noneircular signals [ C]//ICSP 2010: IEEE 10th International Con- ference on Signal Processing. Washington, DC: IEEE Computer So- ciety, 2010:365-368.

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部