期刊文献+

湍流与蠕虫的DNA序列的多重分形谱分析 被引量:1

Multi-fractal spectrum for signal time series of turbulence and worm DNA
下载PDF
导出
摘要 为了用多重分形谱理论定量描述复杂系统的内部结构,详细讨论了多重分形谱中各参量的物理意义,给出了计算多重分形谱的公式,并采用小波WTMM(wavelet transform maxima modulus)算法计算了多分形Cantor集、湍流和DNA序列的多重分形谱。研究结果表明:多分形谱分析能够得到序列(或集合)不均匀的整体分布信息,湍流与DNA的多分形特性十分相似,DNA比湍流更不均匀,"混乱"特性似乎更充分,基于小波算法的WTMM理论可以用来计算复杂现象的多分形谱,计算结果是可信的。 To describe the inner structure of complex systems by multi-fractal theory,the physical significance of the parameters in the multi-fractal spectrum were discussed,and the formula for the calculation of the multi-fractal spectrum were presented.Based on the WTMM method,the signal of the multi-fractal Cantor set,the turbulence and the worm DNA were analyzed.The results show that the information of construction can be inflected by the multi-fractal spectrum and the multi-fractal characteristics of DNA,and the turbulence are similar.The method of WTMM can be used to calculate multi-fractal spectrum of signal in complex system with valid results.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2010年第5期572-577,共6页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(10372038)
关键词 多重分形 小波 湍流 蠕虫DNA multi-fractal wavelet turbulence worm DNA
  • 相关文献

参考文献9

  • 1HASLSEY T C, JENSEN M H, KADANOFF L P,et al. Fractal measures and their singularities: the characterization of strange sets[J]. Phys Rev A, 1986 (33) : 1141-1151.
  • 2ARNEODO A, GRASSEAU O. Wavelet, transform of multifractals [J]. Phy Rev Letters, 1988,61 (20) : 2281-2284.
  • 3MUZY J F, BACRY E, ARNEODO A. The multifractal formalism revisited with wavelets[J]. International J of Bifurcation and Chaos, 1994, 4 (2): 245- 302.
  • 4ARNEODO A, ARGOUL F, BACRY E, et al. Golden mean arithmetic in the fractal branching of diffusion-limited aggregates [J]. Phy Rev Letters, 1992,68 (23): 3456-3459.
  • 5ARNEODO A, BACRY E, MUZY F. Oscillating singularities in locally self-similar functions[J]. Phy Rev Letters, 1995,74 (24) : 4823-4826.
  • 6ARNEODO A, D'AWBENTON C Y, BACRY E, et al. Wavelet based fractal analysis of DNA sequences [J]. Physica D, 1996 (6) :192-320.
  • 7王晓平,吴自勤.多重分形谱及其在材料研究中的应用[J].物理,1999,28(6):342-347. 被引量:21
  • 8FEDER J. Fractals[M]. New York: Plenum Press, 1988.
  • 9傅强.多分形特性的子波分析及其在Rayleigh-Benard对流温度信号中的应用[J].工程力学,2002,19(2):100-108. 被引量:9

二级参考文献9

  • 1Li Hua,Phys Rev B,1996年,53卷,16631页
  • 2Li Hua,Phys Rev B,1995年,51卷,13554页
  • 3Wang Bing,Solid State Commun,1995年,96卷,69页
  • 4龙期易,物理,1994年,23卷,158页
  • 5王坚,物理,1992年,21卷,747页
  • 6吴自勤,物理,1992年,21卷,550页
  • 7丁菊仁,物理,1990年,19卷,81页
  • 8Huang L J,Phys Rev B,1989年,40卷,858页
  • 9王晓平,电子显微学报

共引文献24

同被引文献20

  • 1卢方元.中国股市收益率的多重分形分析[J].系统工程理论与实践,2004,24(6):50-54. 被引量:50
  • 2黄诒蓉.中国股票市场多重分形结构的实证研究[J].当代财经,2004(11):53-56. 被引量:7
  • 3马瑞恒,李钊,王伟策,钱汉明,徐全军,娄建武,唐献述,周翔.基于小波变换模极大的爆破震动信号奇异谱分析[J].爆炸与冲击,2004,24(6):529-533. 被引量:7
  • 4曹广喜,史安娜.上证指数的分形特征分析[J].生产力研究,2007(12):44-46. 被引量:3
  • 5Lo A W. Long-term memory in stock market Prices[J]. Econometrica, 1991, 59: 1279-1314.
  • 6Peters E E. Fractal Market Analysis: Applying Chaos Theory to Investment and Economics[M]. Economic Science Press, 2002.
  • 7Lux T, Marches M. Scaling and criticality in a stochastic multagent model of a financial market[J]. Nature, 1999, 397(11): 498-500.
  • 8Calvet L, Fisher A. Multifractality in asset returns: Theory and evidence[J]. The Review of Economics and Statistics, 2002, 84: 381-406.
  • 9Onali E, Goddard J. Unifractality and multifractality in the Italian stock market[J]. International Review of Financial Analysis, 2009, 18: 154-163.
  • 10Stavroyiannis S, Makris I, Nikolaidis V. Non-extensive properties multifractality and inefficiency degree of the Athens Stock Exchange General Index[J]. International Review of Financial Analysis, 2010, 19(1): 19 -24.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部