期刊文献+

基于机器人群的主动传感器网络自组织的运动规划 被引量:3

Motion Planning for Self-organization of Active Sensor Networks Based on Multi-robots
下载PDF
导出
摘要 主动传感器网络的自组织通常要求移动节点群(机器人群)通过障碍物环境移动到指定地点后,重新调整并按预定布局组网.在网络的自组织过程中要保证每个移动节点(机器人)与整个网络之间的连通性.在对移动机器人的保持连通性进行优化的基础上,提出了单步位置预测与群体势场相结合的分布式运动规划方法进行主动传感器网络的部署和重置,证明了机器人运动控制的稳定性和网络的连通性保持,进行了有和无障碍物环境下超过40个机器人的仿真,结果表明该方法适用于大规模的主动传感器网络重置,并对不同规模的网络具有可扩展性. Self-organization of an active sensor network always requires a group of mobile nodes(robots) to move from an area to a desired area in the environment with obstacles to reconfigure the network topology according to the scheduled layout.During the self-organization,it needs to be ensured that each mobile node(robot) maintains the wireless link to the network.By optimizing the preserved connectivity of the mobile robots,a distributed motion planning algorithm based on a single-step location prediction and collective potential field is presented to deploy and reconfigure the active sensor network.The stability of controlling the mobile nodes and the preserved connectivity of the network are analyzed.Simulations are conducted for a group of more than 40 robots with and without obstacles in the environment.The results show that the proposed algorithm is effective for reconfiguration of a large scale active sensor network,as well as the networks with different sizes.
出处 《自动化学报》 EI CSCD 北大核心 2010年第10期1409-1416,共8页 Acta Automatica Sinica
基金 国家自然科学基金(60675056)资助~~
关键词 主动传感器网络 自组织 保持连通性 单步位置预测 群体势场 稳定性分析 Active sensor network self-organization preserved connectivity single-step location prediction(SSLP) collective potential field(CPF) stability analysis
  • 相关文献

参考文献11

  • 1Flocchini P, Prencipe C, Santoro N, Widmayer P. Gathering of asynchronous robots with limited visibility. Theoretical Computer Science, 2005, 337(1-3): 147-168.
  • 2Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control, 2006, 51(3): 401-420.
  • 3Balch T, Hybinette M. Social potentials for scalable multirobot formations. In: Proceedings of the IEEE International Conference on Robotics and Automation. San Francisco, USA: IEEE, 2000. 73-80.
  • 4Yuan M W, Jiang P. Social potentials based dynamic cooperation chain. In: Proceedings of the IEEE International Conference on Robotics, Automation and Mechatronics. Singapore, Singapore: IEEE, 2004. 136-140.
  • 5Schneider F E, Wildermuth D. A potential field based approach to multi robot formation navigation. In: Proceedings of the IEEE International Conference on Robotics, Intelligent Systems and Signal Processing. Changsha, China: IEEE, 2003. 680-685.
  • 6Fan W H, Liu Y H, Wang F, Cai X P. Multi-robot formation control using potential field for mobile Ad-Hoc networks. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics. Hong Kong, China: IEEE, 2005. 133-138.
  • 7Predslund J, Mataric M J. A general algorithm for robot formations using local sensing and minimal communication. IEEE Transactions on Robotics and Automation, 2002, 18(5): 837-846.
  • 8Gazi V, Passino K M. Stability analysis of swarms. IEEE Transactions on Automatic Control, 2003, 48(4): 692-697.
  • 9Gazi V, Passino K M. Stability analysis of Social foraging swarms. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(1): 539-557.
  • 10Diestel R. Graph Theory (Second Edition). New York: Springer-Verlag, 2000. 43-66.

同被引文献36

  • 1张梅凤,邵诚,甘勇,李梅娟.基于变异算子与模拟退火混合的人工鱼群优化算法[J].电子学报,2006,34(8):1381-1385. 被引量:82
  • 2Akyildiz I F, Pompili D, Melodia T. Underwater acoustic sensor networks: research challenges. Ad Hoc Networks, 2005, 3(3): 257-279.
  • 3Underwater sensor networks lab [Online], available: http://uwsn.engr.uconn.edu/usefullinks.html, May 15, 2011.
  • 4Akyildiz I F. Underwater acoustic sensor networks (UW-ASN) [Online], available: http://www.ece.gatech. edu/research/labs/bwn/UWASN, Dec 6, 2011.
  • 5Pompili D, Melodia T, Akyildiz I F. Deployment analysis in underwater acoustic wireless sensor networks. In: Proceedings of the 1st ACM International Workshop on Underwater Networks. Los Angeles, USA: ACM, 2006. 48-55.
  • 6Pompili D, Melodia T, Akyildiz I F. Three-dimensional and two-dimensional deployment analysis for underwater acoustic sensor networks. Ad Hoc Networks, 2009, 7(4): 778-790.
  • 7Akkaya K, Newell A. Self-deployment of sensors for maximized coverage in underwater acoustic sensor networks. Computer Communications, 2009, 32(7-10): 1233-1244.
  • 8Liu B, Ren F Y, Lin C, Yang Y, Zeng R F, Wen H. The redeployment issue in underwater sensor networks. In: Proceedings of the IEEE Global Telecommunications Conference. New Orleans, USA: IEEE, 2008. 5117-5122.
  • 9Domingo M C. Optimal placement of wireless nodes in underwater wireless sensor networks with shadow zones. In: Proceedings of the 2nd IFIP Wireless Days. Paris, France: IEEE, 2009. 1-6.
  • 10Aitsaadi N, Achirt N, Boussettat K, Pujolle G. Differentiated underwater sensor network deployment. In: Proceedings of the IEEE Europe Oceans. Aberdeen, UK: IEEE, 2007. 1-6.

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部