期刊文献+

三维环境中多机器人动态目标主动协作观测方法 被引量:6

An Active Cooperative Observation Method for Multi-robots in Three Dimensional Environments
下载PDF
导出
摘要 动态目标的多移动机器人主动协作观测方法是指以获取较优的观测结果为目的,对携带同构/异构观测传感器的多个机器人系统的观测数据进行有效融合并同时对其行为进行协调优化的方法.本文主要研究了三维环境中的多机器人动态目标主动协作观测的问题.首先,以扩展集员估计方法(Extended set-membership filter,ESMF)为基础,将信息融合过程与算法本身存在的集合运算环节相结合,提出了一种高精度的多机器人观测信息融合方法.该方法在保证较高观测精度的同时,并没有显著增加单机器人扩展集员估计算法的计算量,因此具有较高的实时性.此外,利用最优观测角度的概念,通过引入相对速度空间(Relative velocity coordinates,RVCs),设计了多移动机器人协调行为优化方法,该方法可以将多机器人协调行为优化问题转化为线性规划问题,以实现具有较高实时性的多机器人三维动态目标主动协作观测.最后,为了验证所研究方法的可行性与有效性,进行了三维空间动态目标协作观测仿真实验. The solution to multiple mobile robot systems actively and cooperatively observing a moving target (MACO) means the algorithm that tries to pursuit optimal (sub-optimal) observations of the moving target by simultaneously fusing the observational data from multiple robot systems and regulating their behaviors cooperatively. In this paper, the 3D MACO method with two robots is studied. First, at the basis of extended set-membership filter (ESMF), a high precise observation fuse method is presented through combining the information fuse process and the set operations in ESMF algorithm. The new algorithm is as fast as the single ESMF algorithm since it has almost the same computational burden. Second, a coordinate behavior optimization method is given by combining the concept of optimal observational angle and the relative velocity coordinates (RVC) planning method. By using the RVC method, the coordinate behavior optimization can be transferred into a linear planning (LP) problem, which makes its real time application possible. Finally, 3D moving target observational simulations are conducted to verify the feasibility and validity of the proposed algorithm.
出处 《自动化学报》 EI CSCD 北大核心 2010年第10期1443-1453,共11页 Acta Automatica Sinica
基金 机器人学国家重点实验室自主课题(RLZ200806)资助~~
关键词 多移动机器人系统 主动协作观测 扩展集员估计 相对速度空间 Multiple mobile robots active cooperative observation extended set-member filter (ESMF) relative velocity coordinate (RVC)
  • 相关文献

参考文献11

  • 1Murtra A C, Tur J M M, Sanfeliu A. Efficient active global localization for mobile robots operating in large and cooperative environments. In: Proceedings of the IEEE International Conference on Robotics and Automation. Pasadena, USA: IEEE, 2008. 2758-2763.
  • 2Zengin U, Dogan A. Cooperative target tracking for autonomous UAVs in an adversarial environment. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Keystone, USA: AIAA, 2006. 1-15.
  • 3Zhou K X, Roumeliotis S I. Optimal motion strategies for range-only distributed target tracking. In: Proceedings of the American Control Conference. Minneapolis, USA: IEEE, 2006. 5195-5200.
  • 4Gu C, Chandler P R, Schumacher C J, Sparks A, Pachter M. Optimum cooperative sensing using a team of UAVs. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4): 1446-1458.
  • 5Stroupe A W, Martin M C, Balch T. Distributed sensor fusion for object position estimation by multi-robot systems. In: Proceedings of the IEEE International Conference on Robot and Automation. Washington D.C., USA: IEEE, 2001. 1092-1098.
  • 6周波,韩建达.基于UD分解的自适应扩展集员估计方法[J].自动化学报,2008,34(2):150-158. 被引量:10
  • 7Ousingsawat J, Campbell M E. On-line estimation and path planning for multiple vehicles in an uncertain environment. International Journal of Robust and Nonlinear Control, 2004, 14(8): 741-766.
  • 8Yang P, Freeman R A, Lynch K M. Multi-agent coordination by decentralized estimation and control. IEEE Transactions on Automatic Control, 2006, 53(11): 2480-2496.
  • 9Zu D, Han J D, Tan D L. LP-based optimal path planning in acceleration space. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics. Kunming, China: IEEE, 2006. 1340-1345.
  • 10祖迪,韩建达,谈大龙.加速度空间中基于线性规划的移动机器人路径规划方法[J].自动化学报,2007,33(10):1036-1042. 被引量:9

二级参考文献30

  • 1[11]Scholte E,Campell M E.A nonlinear set-membership filter for on-line applications.International Journal of Robust and Nonlinear Control,2003,13(15):1337-1358
  • 2[12]Cui N Z,Hong L,Layne J R.A comparison of nonlinear filtering approaches with an application to ground target tracking.Signal Processing,2005,85(8):1469-1492
  • 3[13]Thornton C L,Bierman G J.UDU covariance factorization for Kalman filter.Control and Dynamic Systems,1980,17:177-248
  • 4[14]Mohinder S G,Angus P A.Kalman Filtering:Theory and Practice Using Matlab.New York:Wiley,2001.216-252
  • 5[15]Kapoor S,Gollamudi S,Nagaraj S,Huang Y F.Tracking of time-varying parameters using optimal bounding ellipsoid algorithms.In:Proceedings of the 34th Allerton Conference on Communication,Control and Computing.Monticello,Illinois:IEEE,1996.1206-1216
  • 6[16]Maksarov D G,Norton J P.Computationally efficient algorithms for state estimation with ellipsoidal approximations.International Journal of Adaptive Control and Signal Processing,2002,16(6):411-434
  • 7[17]Durieu C,Polyak B T,Walter E.Trace versus determinant in ellipsoidal outer-bounding with application to state estimation.In:Proceedings of the 13th IFAC World Congress.San Francisco,California:1996.43-48
  • 8[1]Shamma J S,Tu K Y.Approximate set-valued observers for nonlinear systems.IEEE Transactions on Automatic Control,1997,42(5):648-658
  • 9[2]Garulli A,Vicino A.Set membership localization of mobile robots via angle measurements.IEEE Transactions on Robotics and Automation,2001,17(4):450-463
  • 10[3]Schweppe F.Recursive state estimation:unknown but bounded errors and system inputs.IEEE Transactions on Automatic Control,1968,13(1):22-28

共引文献17

同被引文献90

引证文献6

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部