期刊文献+

基于平衡定价和成本梯度的科学工作流调度策略 被引量:3

Equilibrium Pricing and Cost Gradient Based Scheduling Strategy of Scientific Workflow
下载PDF
导出
摘要 科学工作流调度在自治网格和竞争市场环境下变得极具挑战性.为了兼顾科学用户和服务提供者的需要,提出效用网格环境下市场驱动的科学工作流调度框架:使用平衡定价机制推导出多个资源约束情况下的服务价格,最大化服务提供者的利润和实现资源的最优分配;成本优化映射策略引入成本梯度因子作为服务选择的标准,提高调度算法的优化能力和优化速度.性能模拟表明该框架不仅实现了较高的资源节点收益和资源利用率,还可在保证用户QoS要求的前提下优化不同类型科学工作流的执行成本. Scheduling of scientific workflow is becoming more challenging for autonomous grid and egoism of competitive market.We proposed market-driven scientific workflow scheduling framework(MSWSF) in utility grid to consider the benefits of both scientific users and service providers.Equilibrium pricing scheme derives service price under multiple resource constraints to achieve optimal allocation of resources and maximal profits of service providers.Cost optimization mapping strategy introduces a cost gradient metric as a criterion for service selection in order to improve optimization capability and speed.Performance simulation proves MSWSF not only can achieve high average profits of resource nodes and resource utilization rate,but also can optimize usage cost of different types of scientific workflows while satisfying QoS requirements.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第10期2416-2421,共6页 Acta Electronica Sinica
基金 国家863高技术研究发展计划(No.2006AA01A113) 国家自然科学基金(No.61070017) 山东大学研究生自主创新基金(No.YZC09063)
关键词 网格计算 任务调度 科学工作流 服务定价 grid computing task scheduling scientific workflow service pricing
  • 相关文献

参考文献13

  • 1J Yu,R Buyya.A Taxonomy of workflow management systems for grid computing[J].Journal of Grid Computing,2005,3(3-4):171-200.
  • 2J Yu,R Buyya,C K Tham.Cost-based scheduling of scientific workflow applications on utility grids .Proceedings of the 1st IEEE International Conference on e-Science and Grid Computing .Melbourne Australia:IEEE,2005.140-147.
  • 3O O Sonmez,A Gursoy.Comparison of pricing policies for a computational grid market .Parallel Processing and Applied Mathematics[M].Berlin/Heidelberg:Springer,2006.766-733.
  • 4C L Li,L Y Li.An optimization approach for decentralized QoS-based scheduling based on utility and pricing in grid computing[J].Concurrency and Computation:Practice &Experience,2007,19(1):107-128.
  • 5吴健,邓磊,胡正国.网格计算经济模型中的价格协商和管制[J].西北工业大学学报,2008,26(4):497-502. 被引量:4
  • 6李立,刘元安,马晓雷.基于组合双向拍卖的网格资源分配[J].电子学报,2009,37(1):165-169. 被引量:22
  • 7H Li,Y Zhong,Joan Lu.A banking based grid recourse allocation scheduling .Proceedings of the 3rd International Conference on Grid and Pervasive Computing .Kunming:IEEE,2008.239-244.
  • 8R Buyya,D Abramson,J Giddy,et al.Economic models for resource management and scheduling in grid computing[J].Journal of Concurrency:Practice and Experience,Grid computing special issue,2002,14(13-15):1507-1542.
  • 9M Wieczorek,R Prodan,T Fahringer.Comparison of workflow scheduling strategies on the grid .Parallel Processing and Applied Mathematics[M].Berlin/Heidelberg:Springer,2006.792-800.
  • 10陈宏伟,王汝传.费用-时间优化的网格有向无环图调度算法[J].电子学报,2005,33(8):1375-1380. 被引量:14

二级参考文献28

  • 1Yang Jin, Yang Shoubao, Li Maosheng, Fu Qianfei. An autonomous pricing strategy toward market economy in computational grids[ A]. In Proc. of the Int Conf on Information Technology: Coding and Computing [ C ]. Nevada: IEEE Press, 2005.793 - 794.
  • 2P Ghosh, N Roy, S K Das, K Basu. A pricing strategy for job allocation in mobile grids using a non-cooperative bargaining theory framework[J]. Journal of Parallel and Distributed Computing,2005,65( 11 ) : 1366- 1383.
  • 3M Schwind, O Gujo, T Stockheim. Dynamic resource prices in a combinatorial grid system[ A]. In Proc. of the 8th IEEE Int Conf on E-Commerce Technology and 3rd IEEE. Int Conf on ENTERPRISE Computing, E-Commerce, and E-Services [C ]. California: IEEE Press,2006.49- 54.
  • 4Zhao Xiangang, Xu Liutong, Wang Bai,A dynamic price model with demand prediction and task classification in gdd[ A ]. In Proc. of the 6th Int Conf on Grid and Cooperative Computing [ C]. Urumchi: IEEE Press,2007.775 - 782.
  • 5A Das,D Grosu. Combinatorial auction-based protocols for source allocation in grids [ A ]. In Proc. of the 19th IEEE Int Parallel and Distributed Processing Symposium[ C ]. Colorado: IEEE. Press, 2005.23 - 30.
  • 6M Xia, J Stallaert, A B Whinston. Solving the combinatorial double auction problem[ J ]. European Journal of Operational Research, 2005,164( 1 ) :239 - 251.
  • 7Li Li, Liu Yuanan, B Stiller. Combinatorial Double Auction- based Scheme for Resource Allocation in Grids[ R]. University of Zurich, Department of Informatics, CSG, Technical Report No. 2008.05, Zudch, 2008.
  • 8M Xia,G J Koehler,A B Whinston. Pricing combinatorial auctions[ J]. European Journal of Operational Research, 2004, 154 (1) :251 - 270.
  • 9Ememann C, Hamscher V, Yahyapour R. Economic scheduling in grid computing[A].Jab Scheduling Strategies for Parallel Processing, 8th International Workgshop, JSSPP 2002 [ C ]. Berlin, Germany: Springer-Verlag,2002.128 - 152.
  • 10Moreno R, Alonso-Conde A B.Jab scheduling and resource management techniques in economic grid environments[ A]. Grid Computing. First Acres Grids Conference [C]. Berlin, Germany: Springer-Ver-lag,2003,25 -32.

共引文献37

同被引文献27

  • 1ZHONG L, et al. A task assignment algorithm for multiple aerial vehicles to attack targets with dynamic values [ J]. IEEE Transactions on Intelligent Transportation Systems, 2013,14 ( 1 ) :236 - 248.
  • 2ZHENG X H, et al. A task operation model for resource al- location optimization in business process management [ J ]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2012,42 ( 5 ) : 1256 - 1270.
  • 3JING T, et al. Diversity-adaptive parallel memetic algo- rithm for solving large scale combinatorial optimization problems [ J ]. Soft Computing, 2007,11 ( 9 ) : 873 - 888.
  • 4SALCEDO-SANZ S, et al. Hybrid meta-heuristics algo- rithms for task assignment in heterogeneous computing systems [ J ]. Computers & Operations Research, 2006,33 (3) :820 -835.
  • 5GONG Y J, et al. An efficient resource allocation scheme using particle swarm optimization [ J ]. IEEE Transactions on Evolutionary Computation, 2012,16 ( 6 ) : 801 - 816.
  • 6CHITRA P, et al. Application and comparison of hybrid ev- olutionary multiobjective optimization algorithms for sol- ving task scheduling problem on heterogeneous systems [ J]. Applied Soft Computing ,2011,11 ( 2 ) :2725 - 2734.
  • 7LI M, et al. Min-energy voltage allocation for tree struc- tured tasks [ J ]. Journal of Combinatorial Optimization, 2006,11 (3) :305 -319.
  • 8LI M, et al. An efficient algorithm for computing optimal discrete voltage schedules [ J ]. SIAM Journal on Compu- ting,2005,35 (3) :658 - 671.
  • 9IBM Blue Gene team. Overview of the IBM Blue Gene/P project [ J]. IBM Journal of Research and Development, 2008,52( 1 ) :199 -220.
  • 10HAN X, et al. Deadline scheduling and power manage- ment for speed bounded processors [ J ]. Theoretical Com- puter Science, 2010,411 ( 40 - 42 ) : 3587 - 3600.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部