期刊文献+

短时交通流组合预测模型研究 被引量:5

Study on Short-term Traffic Flow Combined Forecast Model
下载PDF
导出
摘要 短时交通流预测是目前智能交通领域的研究热点,文中从实际应用的角度出发,提出了用于流量和速度预测的组合预测模型.该模型包含傅里叶历史估计模型、自回归模型和邻域回归模型三个子模型.详细介绍了组合预测模型的预测机理、模型细节以及用以实现模型实时更新的迭代回归算法.该模型被实际应用到北京市道路预测预报系统中,实际预测误差不超过15%. Short-term traffic flow forecasting is a research focus of Intelligent Transportation System (ITS).From a practical view,a combined forecast model is studied in this paper,which includes Discrete Fourier Transform (DFT)model,autoregressive model and neighbourhood regression model. Forecast mechanism and specification are discussed in the paper in detail.In order to update forecast model real-timely,recursive regression method is used to change weights and coefficients of sub-models.This model has been applied to Beijing Traffic Forecast System and the average relative error of prediction is less than 15%in practice.
出处 《武汉理工大学学报(交通科学与工程版)》 2010年第5期874-876,881,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 北京市科委绿色通道项目资助(批准号:D07020601400705)
关键词 组合预测模型 邻域回归 递归回归方法 离散傅立叶变换 combined forecast model neighborhood regression recursive regression method discrete fourier transform
  • 相关文献

参考文献9

  • 1Vlahogianni E I, Karlaftis M G, Golias J C. Opti mized and meta-optimized neural networks for short term traffic flow prediction: a genetic approach[J]. Transportation Research Part C. 2005(13):211-234.
  • 2Wang Jin. Studies on short-term traffic flow forecasting models and methods [D]. Beijing: Tsinghua University. 2005.
  • 3Dai Shihua, Zhou Xinrong. Application of kalman filtering theory on prediction of short-term traffic volume[J]. Journal of Harbin Commercial University. 2005(6) :728-730.
  • 4饶从军,王成,涂火年.一种新的预测模型及其应用[J].武汉理工大学学报(交通科学与工程版),2007,31(6):1098-1101. 被引量:4
  • 5胡晓健,王炜,陆建.基于自适应粒子群优化算法的交通量短时预测模型[J].武汉理工大学学报(交通科学与工程版),2009,33(1):9-12. 被引量:3
  • 6向红艳,朱顺应,胡桂生.基于路段检测器布局的短期交通流预测模型[J].武汉理工大学学报(交通科学与工程版),2009,33(2):263-266. 被引量:2
  • 7Huang, h.-q. , t.-h. Tang. Short-term traffic flow forecasting based on ARIMA-ANN[C]//Control and Automation. ICCA 2007. IEEE International Conference on. 2007.
  • 8Song Y, Hu W. Combined prediction research of city traffic flow based on genetic algorithm[C]//Electronic Measurement and Instruments, ICEMI'07. 8th International Conference on. 2007.
  • 9陈宝如.市区路段动态旅行时间预测之研究[D].台北:台湾大学土木研究所,2007.

二级参考文献13

  • 1朱顺应,王红,严新平.道路交通安全宏观评价F-AHP法[J].武汉理工大学学报(交通科学与工程版),2005,29(5):697-699. 被引量:20
  • 2向红艳,朱顺应,王红,严新平.短期交通流预测效果的模糊综合评判[J].武汉理工大学学报(交通科学与工程版),2005,29(6):921-924. 被引量:7
  • 3王进,史其信.短时交通流预测模型综述[J].中国公共安全(学术版),2005(1):92-98. 被引量:59
  • 4Konstantions E P,Miehael N V. On the computation of all global minimizers through particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004,8 (3) : 221-224.
  • 5Shi.Y, Eberhart R C. A modified particle swarm optimizer[C]. Proceedings of IEEE International Conference on Evolutionary Computation (CEC 1998), Piscataway, N J, 1998 : 69-73.
  • 6Ghosh B, Basu B, O'Mahony M. Bayesian time-series model for short-term traffic flow forecasting[J]. Journal of Transportation Engineering, 2007, 133: 180-192.
  • 7Lu Hungching,Yeh Mingfeng. Two stage GM(1,1) model: grey step model. The Journal of Grey System, 1997,9(1) : 9-14.
  • 8Geng Jianping,Sun Changsheng. Grey modeling via jump trend series. The Journal of Grey System, 1998,10(4) : 51-354.
  • 9Chen Changhuang. A new method for grey modeling jump series. The Journal of Grey System, 2002, 14(2) :123-132.
  • 10贺国光,李宇,马寿峰.基于数学模型的短时交通流预测方法探讨[J].系统工程理论与实践,2000,20(12):51-56. 被引量:131

共引文献6

同被引文献52

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部