期刊文献+

平面冲击波作用下TiO2晶粒的相变纳米化 被引量:1

Study on Nanometerization of Titania Grain during Transformation under Planar Shock Wave
原文传递
导出
摘要 利用平面冲击波技术,对溶胶-凝胶法制备的锐钛矿型TiO2粉体和干凝胶进行冲击实验,采用X射线衍射(XRD)、透射电镜(SEM)和激光粒度分析仪(LPSA)等手段对冲击前后的TiO2粉体和干凝胶进行表征。结果表明:冲击波的高温作用能够实现亚稳态的锐钛矿型TiO2向稳定态的金红石型TiO2转变,并且冲击波直接作用于干凝胶时更容易获得稳定态的金红石型TiO2;冲击波的瞬时性可以抑制TiO2晶粒的长大,实现晶粒纳米化;冲击波的高压作用可以有效控制由于溶胶-凝胶法导致的粉体团聚现象。 The anatase powders and TiO2 xerogel powders prepared by the sol-gel method were impacted under planar shock wave.The powders after impact wave loading were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and laser particle size analyzer(LPSA).The results showed that the metastable anatase form of TiO2 can be transformed into stable rutile under the high temperature effect of the shock wave,and the phase change of the TiO2 xerogel powders to the rutile phase is more accessible than that of the anatase powders.The short duration of shock wave can inhibit the growth of grain and achieve nano-grains.The high pressure process can effectively control agglomeration as the result of the sol-gel method.
出处 《高压物理学报》 EI CAS CSCD 北大核心 2010年第5期395-400,共6页 Chinese Journal of High Pressure Physics
基金 国家自然科学基金委员会-中国工程物理研究院NSAF联合基金(10476023)
关键词 平面冲击波 二氧化钛 纳米 相变 planar shock wave titania nanometer phase change
  • 相关文献

参考文献11

  • 1Yu J G,Yu J C,Leung M K P,et al. Effects of Acidic and Basic Hydrolysis Catalysts on the Photocatalytic Activity and Microstructures of Bimodal Mesoporous Titania [J].J Catal, 2003,217 (1) : 69-78.
  • 2Wu Y Q,Du J, Choy K L,et al. Fabrication of Titanium Dioxide Ceramics by Laser Sintering Green Layers Prepared via Aerosol Assisted Spray Deposition [J]. Mater Sci Eng A,2007,454-455:148-155.
  • 3YUJiaguo.TiO_2 thin film photocatalyst[J].Rare Metals,2004,23(4):289-295. 被引量:12
  • 4Ferroni M,Carotta M C,Guidi V,et al. Preparation and Characterization of Nanosized Titania Sensing Film[J]. Sens Actuators B,2001,77(1-2) : 163-166.
  • 5Kanna M,Wongnawa S. Mixed Amorphous and Nanoerystalline TiO2 Powders P.repared by Sol-Gel Method:Char aeterization and Photocatalytic Study [J].Mater Chem Phys,2008,110(1):166 -175.
  • 6Wang C C,Ying J Y. Sol-Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals [J]. Chem Mater,1999,11(11) :3113-3120.
  • 7Su C,Tseng C M,Chen L F,et al. Sol-Hydrothermal Preparation and Photocatalysis of Titanium Dioxide [J]. Thin Solid Films,2006,498(1-2) :259-265.
  • 8Bacsa R R,Gratzel M. Rutile Formation in Hydrothermally Crystallized Nanosized Titania [J]. J Am Ceram Soc, 1996,79(8) :2185-2188.
  • 9Sekine T, He H L,Kobayashi T, et al. Shock-Induced Transformation of β-Si3N4 to a High Pressure Cubic-Spinel Phase[J]. Appl Phys Lett,2000,76(25):3706-3708.
  • 10张万甲.冲击引起石墨→金刚石相转变机理的探讨[J].高压物理学报,2004,18(3):209-219. 被引量:7

二级参考文献80

  • 1[1]Bundy F P,et al.Man-Made Diamonds [J].Nature,1955,176:51.
  • 2[2]DeCarli P S,et al.Science,1961,133:1821.
  • 3[3]Alder B T,et al.Behavior of Strongly Shocked Carbon [J].Phys Rev Lett,1961,7:367.
  • 4[4]Erskine D T,et al.Shock-Induced Martensitic PhaseTransformation of Oriented Graphite to Diamond [J].Nature,1991,349:317.
  • 5[5]Erskine D T,et al.Shock-Induced Martensitic Transformation of Highly Oriented Graphite to Diamond [J].J Appl Phys,1992,71(10):4882.
  • 6[6]DeCarli P S.High Pressure Science and Technology[A].Timmerhous K D.6th AIRAPT Conf,Boulder,Colorado,1997 [C].New York:Plenum,1979.940.
  • 7[7]Kleiman J,et al.Shock Compression and Flash Heating of Graphite/Metal Mixtures at Temperatures up to 3200 K and Pressures up to 25 GPa [J].J Appl Phys,1984,56(5):1440.
  • 8[8]Bundy F P.Direct Conversion of Graphite to Diamond in Static Pressure Apparatus [J].J Chem Phys,1963,38:631.
  • 9[9]Sobolov V V.Shock Wave Use for Diamond Synthesis [J].J Phys IV France,1997,7:C3-73.
  • 10[10]Zhuk A Z,et al.Shock Metamorphism of the Graphite Quasimonocrystal[J].High Pressure Research,1997,15:245.

共引文献17

同被引文献14

  • 1肖萍,郑少波,尤静林,蒋国昌,陈辉,曾昊.钛氧化物结构及其拉曼光谱表征[J].光谱学与光谱分析,2007,27(5):936-939. 被引量:18
  • 2Cao Y C,Zhao Z Y,Yi J,et al.Luminescence Properties of Sm3 +-doped TiO2 Nanoparticles:Synthesis,Characterization,and Mechanism [J].Journal of Alloys and Compounds,2013.554:12-20.
  • 3Khatim 0,Amamra M,Chhor K,et al.Amorphous-anatase Phase Transition in Single Immobilized TiO2 Nanoparticles[J].Chemical Physics Letters,2013,558:53-56.
  • 4Chan C C,Chang C C,Hsu W C,et al.Photocatalytic Activities of Pd-Loaded Mesoporous TiO2 Thin Films[J].Chemical Engineering Journal,2009,152(2):492-497.
  • 5Mattesini M,De Almeida J S,Dubrovinsky L,et al.High-Pressure and High-Temperature Synthesis of the Cubic TiO2 Polymorph[J].Physical Review B,2004,70(21):212101.
  • 6Dubrovinsky L S,DubrovinskaiaN A,Swamy V,et al.The Hardest Known Oxide[J].Nature,2001,410(6829):653-654.
  • 7Kim Y,Miteugi F,Tomoaki I,et al.Shock-Consolidated IiO2 Bulk with Pure Anatase Phases Fabricated by Explosive Compaction using Underwater Shockwave [J].Journal of the European Ceramic Society,2011,31(6):1033-1039.
  • 8Gao X,Chen P W,and Liu J J.Enhanced Visible-light Absorption of Nitrogen-Doped Titania Induced by Shock Wave[J].Materials Letters,2011,65(4):685-68.
  • 9Wang J X,Yang S Y,Wang J,et al.Phase,Crystal Structure and Sintering Behavior of Shock-Synthesized Pb(Zr0.95Ti0.05)O3 Powders[J].Solid State Sciences,2010,12(12):2054-2058.
  • 10ChenPW,Cao Xy LiuJJ,et al.Shock Synthesis and Characterization of a High-Pressure Phase of TiO2 [J].Materials Science Forum,201,673:155-160.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部