期刊文献+

基于区域特性的NSCT多聚焦图像融合新方法 被引量:3

A New Multi-focus Image Fusion Algorithm Based on NSCT and Regional Characteristics
下载PDF
导出
摘要 提出了一种基于区域特性的NSCT多聚焦图像融合新算法。首先将待融合图像用NSCT分解成不同尺度,不同方向上的子带;然后对分解后的高频系数采用基于区域能量的方法进行融合,对低频系数采用基于区域方差的方法进行融合;最后将融合后的系数进行NSCT反变换得到融合后的图像。实验结果表明基于区域特性的NSCT图像融合方法优于其他传统方法,验证了算法的合理性。 A new multi-focus image fusion algorithm based on the combination of NSCT and regional characteristic is proposed.Firstly,decomposed each source image into highpass subbands and lowpass subbands by NSCT.Secondly,used different fusion rules in different subbands,where region energy rule was adopted in highpass subbands and region variance rule was adopted in lowpass sbbands.Finally,reconstructed the fused image by inverse transform of NSCT.The experimental results show that the performance of the proposed algorithm is better than that of the other traditional fusion algorithms,prove that the proposed algorithm is reasonable.
出处 《科学技术与工程》 2010年第29期7165-7170,共6页 Science Technology and Engineering
基金 广东省自然科学基金(9151064101000037)资助
关键词 图像融合 NSCT变换 小波变换 CONTOURLET变换 区域融合规则 image fusion NSCT transform wavelet transform Contourlet transform region based fusion rule
  • 相关文献

参考文献6

  • 1Pohl C,Van Genderen J L.Multisensor image fusion in remote sensing:Concepts,methods and applications.International Journal of Remote Sensing,1998;19(5):823-854.
  • 2Hall D L,Linas J.An introduction to multisensory data fusion.Proc.of the IEEE,1997;85(1):6-12.
  • 3Normann R A,Maynard E M,Rousche P J.A neural interface for a cortial vision prosthesis.Vision Research,1999;39:2 577-2 587.
  • 4Candes E J.Ridgelets:Theory and application.USA:Department of Statistics,Stanford University,1998.
  • 5Candes E J,Donoho D L.Curvelet-A surprisingly effective non-adaptive representation for objects with edges.In:Curves and Surfaces.Nashville,TN:Vanderbilt Univ.Press,2000:105-120.
  • 6Cunha A L,Zhou Jiangping,Do M N.Nonsubsampled contourlet transform:Filter Design and Application in Image Denoising.International Conference on Image Processing,05,2005.

同被引文献32

  • 1Donoho D L. Compressed sensing [ J ]. IEEE Transactions on Information Theory, 2006,52 (4) : 1289-1306.
  • 2Cand6s E, Romberg J, Tao T. Robust uncertainty princi- ples:exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Transactions on Informa- tion Theory,2006,52(2) :489-509.
  • 3Mallat S G, Zhang Zhifeng. Matching pursuits with time- frequency dictionaries [ J ] . IEEE Transactions on Signal Processing, 1993,41 (12) :3397-3415.
  • 4Divekar A,Ersoy O. Image fusion by compressive sensing [ C]///2009 17th International Conference on Geoinfor- maties. Fairfax: [ s. n. ]. 2009 : 1-6.
  • 5Cand6s E, Romberg J. Sparsity and incoherence in com- pressive sampling [J]. Inverse Problems, 2007,23 ( 3 ): 969-985.
  • 6Cand6s Emmanuel, Tao Terence. Decoding by linear pro- gramming [J]. IEEE Transaction on Information Theory, 2005,51 (12) :4203-4215.
  • 7Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling [ J ]. IEEE Signal Pro- cessing Magazine,2008,25 ( 2 ) : 83- 91.
  • 8Gehm M E,John R,Brady D J,et al. Single-shot compre- ssive spectrall imaging with a dual-disperser architecture [ J ]. Optics Express ,2007,15 ( 21 ) : 14013-14027.
  • 9Tao Wan, Canagarajah N, Achim A. Compressive image fusion [ C ]//l5th IEEE International Conference on Im- age Processing. San Diego : IEEE ,2008 : 1308-1311.
  • 10Huang Qingqing, Ji Yuan, Yang Jian. Improved fusion method for infrared and visible remote sensing imagery using NSCT [ C ]//2011 6th IEEE Conference on Indus- trial Electronics and Applications. Beijing : IEEE, 2011 : 1012-1015.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部