期刊文献+

Quasi-normal环的弱Zariski拓扑性质

Weakly Zariski topology properties in quasi-normal rings
下载PDF
导出
摘要 设Specl(R)是环R所有素左理想构成的集合,α(I)={P∈Specl(R)|IP},β(I)=Specl(R)\α(I),Ul(I)=maxl(R)∩α(I),Vl(I)=maxl(R)∩β(I)和ξ=Ul∑in=1,1≤j1≤j2≤…≤ji≤n(-1)i-1ej1ej2…ejiei∈E(R),i=1,2,…,n,n∈Z+.当R是quasi-normal环时,首先研究了ξ中元素的性质,并借助这些性质证明了如下主要结论:①若R是一个quasi-normal的clean环,则R是左tb-环;②设R是一个quasi-normal环,如果R是一个左tb-环,则ξ形成了maxl(R)的一组基.特别地,maxl(R)是一个紧致的Hausdorff空间. Let Specl(R) be the set of all prime left ideals of a ring R,and denote α(I)={P∈Specl(R)|IP},β(I)=Specl(R)/α(I),Ul(I)=maxl(R)∩α(I),Vl(I)=maxl(R)∩β(I) and ξ=${Ul(∑ni=1,1≤j1≤j2≤…≤ji≤n$(-1)i-1ej1ej2…eji)|ei∈E(R),i=1,2,…,n,n∈Z+ 2}.When R is a quasi-normal ring,some properties of the elements in ξ are discussed and the following results are obtained: ① If R is a clean ring,then R is a left tb-ring;② If R is a left tb-ring,then ξ forms a base for the weak Zariski topology on maxl(R),particularly,maxl(R) is a compact Hausdorff space.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期5-8,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10771182) 江苏省普通高校研究生科研创新项目(CX09B-309Z)
关键词 极大左理想 quasi-normal环 弱Zariski拓扑 tb-环 闭开集 maximal left ideals quasi-normal rings weakly Zariski topology tb-rings clopen sets
  • 相关文献

参考文献10

  • 1汪兰英,魏俊潮.Quasi-normal环的一个平凡扩张[J].扬州大学学报(自然科学版),2009,12(2):1-3. 被引量:4
  • 2范志勇,魏俊潮,李立斌.拟Abel环[J].扬州大学学报(自然科学版),2009,12(3):6-8. 被引量:6
  • 3CHEN Wei-xing. On semiabelian zr regular rings [J]. Intern J Math Sci, 2007, 23(2) : 1-10.
  • 4NICHOLSON W K. Lifting idempotents and exchange rings [J]. Trans Amer Math Soe, 1977, 229(2): 269- 278.
  • 5NICHOLSON W K. On exchange rings [J]. Comm Algebra, 1997, 25(6): 1917-1918.
  • 6YU Hua-ping. Stable range one for exchange rings [J]. J Pure Appl Algebra, 1995, 98(1): 105-109.
  • 7CHEN A Y M. Clean elements in abelian rings [J]. Proe Indian Acad Sci: Math Sci, 2009, 119(2): 145-148.
  • 8SUN Shu-hao. Rings in which every prime ideal is contained in a unique maximal right ideal [J]. J Pure Appl Algebra, 1992, 78(2): 183-194.
  • 9ZHANG Guo-yin, TONG Wen ting, WANG Fang-gui. Spectrum of a noncommutative ring [J]. Comm Algebra, 2006, 34(8):2795-2810.
  • 10CONTESSA M. On pro-rings [J]. Comm Algebra, 1982, 10(1): 93-108.

二级参考文献12

  • 1魏俊潮.直接有限环[J].扬州大学学报(自然科学版),2005,8(2):1-3. 被引量:8
  • 2魏俊潮.Quasi-duo环的刻画[J].扬州大学学报(自然科学版),2006,9(3):1-4. 被引量:8
  • 3KIM J Y. Certain rings whose simple singular modules are GP-injective [J]. Proc Japan Acad, 2005, 81(2): 125-128.
  • 4HUN C, JANG S H, KIM C O, et al. Rings whose maximal one-sided ideals are two-sided [J]. Bull Korean Math Soc, 2002,39(3): 411-422.
  • 5CHEN Jian-long, ZHOU Yi-qiang. Morphic rings as trivial exetensions [J]. Glasgow Math J, 2005, 47(4):139- 148.
  • 6ERLICH G. Units and one-sided units in regular rings [J]. Trans Amer Math, 1976,216(1): 81-90.
  • 7CHEN Wei xing. On semiabelian H-regular rings [J]. Intern J Math Sci, 2007, 23 (2) : 1-10.
  • 8VARADARAJAN K. Hopfian and co-Hopfian objects [J]. Publ Math, 1992, 36(3) : 293-317.
  • 9WEI Jun ehao. On simple singular YJ-injective modules [J]. Southeast Asian Bull Math, 2007, 31(4).. 1009- 1018.
  • 10WEI Jun-chao. Certain rings whose simple singular modules are nil-injective [J]. Turk Math, 2008, 32(4):393- 408.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部