期刊文献+

基于影像数据的三维颅内动脉瘤血流动力学数值:手术前后壁面切模拟对比 被引量:3

3D hemodynamic numerical simulation of intracranial aneurysms before and after embolism treatment based on image data
下载PDF
导出
摘要 背景:颅内动脉瘤是由于动脉血管壁病理性局限性扩张产生的脑血管瘤样突起。血流动力学因素被认为是颅内动脉瘤形成、生长、破裂过程中的一个重要因素,因此基于计算流体力学的计算机数值模拟技术得到了广泛的应用。目的:通过对颅内动脉瘤术前术后进行血流动力学分析计算,探讨颅内动脉瘤术后壁面切应力的变化对动脉瘤是否复发的影响。方法:对1例复发病例和1例未复发病例术前、术后的动脉瘤进行建模,实行血流动力学计算。结果与结论:复发病例术后动脉瘤残颈处的切应力局部剧增;未复发病例术后动脉瘤残颈处切应力普遍减小。术后动脉瘤残颈处壁面切应力与术前相比,若普遍减小,能够降低动脉瘤复发的风险;反之,则增大了动脉瘤复发的风险,动脉瘤易复发。 BACKGROUND:Intracranial aneurysms are pathological dilatations of the arterial wall. Hemodynamic factors play an important role in the formation,growth and rupture of intracranial aneurysms. Therefore,the computational numerical simulation technique based on computational fluid hydrodynamics has been used widely in this field. OBJECTIVE:To explore the relationship between the change of the wall shear stress before and after treatment and recrudescence of intracranial aneurysms. METHODS:3-D models of intracranial aneurysms were created based on patient-specific anatomical images and performed hemodynamic numerical simulation of the models of two patients before and after embolism treatment. RESULTS AND CONCLUSION:For the recrudescent case,the wall shear stress at the neck of the aneurysm was considerably greater than before treatment. While,for the unrecrudescent case,the wall shear stress at the neck of the aneurysm was lower than before treatment. If the wall shear stress at the neck of the aneurysm is lower than before treatment,the risk of recrudescence is low; otherwise,the risk of recrudescence is high.
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2010年第39期7327-7330,共4页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 国家自然科学基金项目(编号:30772234),课题名称:颅内动脉瘤治疗后复发风险的三维血流数值模拟研究~~
  • 相关文献

参考文献20

  • 1Hassan T,Timofeev EV,Saito T,et al.Computational replicas:anatomic reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography.Am J Neuroradiol.2004;25(8):1356-1365.
  • 2Castro MA,Putman CM,Cebral JR.Computational fluid dynamics modeling of intracranial aneurysms:effects of parent artery segmentation on intra-aneurysmal hemodynamics.Am J Neuroradiol.2006;27(8):1703-1709.
  • 3Shojima M,Oshima M,Takagi K,et al.Magnitude and role of wall shear stress on cerebral aneurysm-computational fluid dynamis study of 20 middle cerebral artery aneurysms.Stroke.2004;35(11):2500-2505.
  • 4Hassan T,Ezura M,Timofeev EV,et al.Computational simulation of theerapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm.Am J Neuroradiol.2004;25(1):63-68.
  • 5Sforza DM,Putman CM,Cebral JR.Hemodynamics of Cerebral Aneurysms.Annu Rev Fluid Mech.2009;41:91-107.
  • 6Tateshima S,Murayama Y,Villablanca JP,et al.In vitro measurements of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs.Stroke.2003;34(1):187-192.
  • 7Hoi Y,Meng H,Woodward SH,et al.Effects of arterial geometry on aneurysm growth:three-dimensional computa-tional fluid dynamics study.J Neurosurg.2004;101(4):676-681.
  • 8Jou LD,Christopher MQ,William LY,et al.Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms.Am J Neuroradiol,2003;24(9):1804-1810.
  • 9赵军伟,殷文义,丁光宏,杨新建,史万超,张晓龙.二维弹性动脉瘤模型的血液动力学数值模拟与分析[J].中国生物医学工程学报,2007,26(5):730-738. 被引量:8
  • 10Chatziprodromou I,Tricoli A,Poulikakos D,et al.Haemodynamics and wall remodelling of a growing cerebral aneurysm:a computational model.J Biomech.2007;40(2):412-426.

二级参考文献38

  • 1Ding Guanghong Liu Zhaorong (Department of Applied Mechanics,Fudan University).DISPLACEMENT WAVE OF THE BLOOD VESSEL——A MECHANICAL MODEL[J].Acta Mechanica Sinica,1991,7(2):97-103. 被引量:2
  • 2赵丛海,杨新健,张金男,张晓龙,丁光宏,吴中学.一种经酶处理新型动脉瘤动物模型的建立[J].中华实验外科杂志,2005,22(7):873-875. 被引量:14
  • 3QIN Kai-rong,XU Zhe,WU Hao,JIANG Zong-lai,LIU Zhao-rong.SYNERGY OF WALL SHEAR STRESS AND CIRCUMFERENTIAL STRESS IN STRAIGHT ARTERIES[J].Journal of Hydrodynamics,2005,17(6):752-757. 被引量:15
  • 4[1]Phan TG,Huston J 3rd,Brown RD Jr,et al.Intracranial saccular aneurysm enlargement determined using serial magnetic resonance angiography[J].J Neurosurg,2002,97:1023-1028.
  • 5[2]Steinman DA,Milner JS,Norley CJ,et al.Image-based computational simulation of flow dynamics in a giant intracranial aneurysm[J].Am J Neruoradiol,2003,24,559-566.
  • 6[3]Meng H,Swartz DD,Wang Z,et al.A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo[J].Neurosurgery,2006,59:1094-1101.
  • 7[4]Meng H,Wang Z,Hoi Y,et al.Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation[J].Stroke,2007,38:1924-1931.
  • 8[5]John D,Anderson JR.Computational fluid dynamics-the basics with applications[M].北京:清华大学出版社,2002:416-446.
  • 9[6]Liou TM,Liou SN.A review on in vitro studies of hemodynamic characteristics in terminal and lateral aneurysms models[J].Proc Natl Sci Counc Repub China B,1999,23:133-148.
  • 10[7]Steiger HJ,Poll A,Liepsch DW.Hemodynamic stress in terminal aneurysms.Acta Neurochir,1988,93:18-23.

共引文献29

同被引文献33

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部