期刊文献+

自适应正则化超分辨率MR图像重建(英文) 被引量:2

Self-adaptive regularized super-resolution reconstruction of magnetic resonance images
下载PDF
导出
摘要 背景:超分辨率冲击已经在许多领域展开研究于应用,比如医疗军队,以及视频等。目的:利用自适应正则化超分辨率重建算法,将低梯度场中获得的具有亚象素位移的图像重建出高分辨率、高信噪比的MR图像。方法:采用最小二乘法作为代价函数,并求其导数,以获得迭代公式。在迭代过程中自适应的改变正则化参数和步长。结果与结论:新正则化参数使得代价函数在定义域内具有凸性,同时先验信息被包含于正则化参数中,以提高图像的高频成分。 BACKGROUND:Super-resolution reconstruction has been extensively studied and used in many fields,such as medical diagnostics,military surveillance,frame freeze in video,and remote sensing. OBJECTIVE:In order to obtain high-resolution magnetic resonance images,gradient magnetic field is required and the signal-to-noise will be reduced due to the decrease in voxel size with traditional scan. The present study used a self-adaptive regularized super-resolution reconstruction algorithm to acquire high-resolution magnetic resonance images from four half-pixel-shifted low resolution images. METHODS:The least squares algorithm was used as a cost function. The derivative of the cost function was calculated to obtain an iterative formula of super-resolution reconstruction. In the process of iterative process,the parameter and step size of image resolution were regularized. RESULTS AND CONCLUSION:The new regularization parameter makes cost function of the new algorithm convex within the definition region. The piori information is involved in the regularization parameter that can improve the high-frequency components of the restored image. As shown from the results obtained in the phantom imaging,the proposed super-resolution technique can improve the resolution of magnetic resonance image.
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2010年第39期7407-7410,共4页 Journal of Clinical Rehabilitative Tissue Engineering Research
  • 相关文献

参考文献1

二级参考文献16

  • 1He H,Kondi L P.An image super-resolution algorithm for different error levels per frame[J].IEEE Trans Image Processlng,2006,15(3): 592-603.
  • 2Kang M G,Katsaggelos A K.General choice of the regularization functional in regularized image restoration[J].IEEE Trans Image Processing, 1995,4( 5 ) : 594-602.
  • 3Lee E S,Kang M G.Regularized adaptive high-resolution image reconstruction considering inaccurate sub-pixel registration[J].IEEE Trans Image Processing,2006,12(7) : 826-835.
  • 4Wang Q,Tang X,Shum H.Patch based blind image super resolution[C]//Proceedings of the Tenth IEEE International Conference on Computer Vision ICCV'05,2005 : 1550-5499.
  • 5Patti A J.Members,super-resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time[J].IEEE Trans Image Processing, 1997,6( 8 ).
  • 6Park S C,Park M K,Kang M G.Super-resolution image reconstruction: a technical review[J].IEEE Signal Processing Magazine, 2003 ( 5 ) : 21-36.
  • 7Borman S.Topics in multi-frame super-resolution restoration[D], 2004.
  • 8Tsai R,Huang T.Multi-frame image restoration and registration[J]. Advances in Computer Vision and Image Processing, 1984, 1 : 317-339.
  • 9Stark H,Oskoui P.High-resolution image recovery from image plane arrays,using convex projections[J].J Opt Soc Amer A,1989,6:1715-1726.
  • 10Erem P E,Sezan M l,Tekalp A M.Robust,objeet-based high-resolution image reconstruction from low-resolution video [J].IEEE Trans Image Processing,1997,6:446-451.

共引文献2

同被引文献21

  • 1van den BERG E,FRIEDLANDER M P.In pursuit of a root[EB/OL].[2011-03-22].http://www.optimizationonline.org/DBFILE/2007/06/1708.pdf.
  • 2JOSHUA T,ANMANDO M,ERIC B.Sparse MRI reconstruction via multiscale 10-continuation[C]//SSP '07:IEEE/SP 14th Workshop on Statistical Signal Processing.2007:176-180.
  • 3DONOHO D L,TSAIG Y.Extensions of compressed sensing[J].Signal Processing,2006,86(3):533-548.
  • 4TIBSHIRANI R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society:Series B,1996,58(1):267-288.
  • 5FIGUEIREDO M A T,NOWAK R D,WRIGHT S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J].Journal of Selected Topics in Signal Processing:Special Issue on Convex Optimization Methods for Signal Processing,2007,1 (4):586-598.
  • 6BIOUCAS-DIAS J M,FIGUEIREDO M A T,OLIVEIRA J P.Total variation-based image deconvolution:A majorization-minimization approach[C]//ICASSP 2006:2006 IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway:IEEE,2006,2:278-281.
  • 7LUSTIG M,DONOHO D,PAULY J M.Sparse MRI:The application of compressed sensing for rapid MR imaging[J].Magnetic Resonance in Medicine,2007,58(6):1182-1195.
  • 8CHEN S S,DONOHO D L,SAUNDERS M A.Atomic decomposition by basis pursuit[J].SIAM Review,2001,43(1):129-159.
  • 9XUEFENG,LIU QUAN-SHENG,FAN WEI-HONG.Iterative image restoration using a non-local regularization function and a local regularization operator[C]// ICPR'06:18th International Conference on Pattern Recognition.Washington,DC:IEEE Computer Society,2006,3:766-769.
  • 10L.Ballesteros,W.B.Croft,Resolving Ambiguity for Cross-Language Retrieval[A],Proceedings of ACM SIGIR[C],1998,64-71.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部