期刊文献+

低温引入碳对锂离子电池材料SnO_2阳极行为的影响(英文) 被引量:1

Effect of the Carbon Introduced at Low Temperature on the Anodic Behavior of SnO_2 for Lithium Ion Battery
下载PDF
导出
摘要 以SnO2和葡萄糖为原料,采用一种简单的低温水热法制备了SnO2/C复合材料。采用SEM,TEM,XRD,TG和电化学测试系统对SnO2/C复合材料进行研究,研究结果表明:样品由亚微米大小球形颗粒组成,碳含量大约1.5wt%。作为锂离子电池负极材料,SnO2/C复合材料展现了高达52.7%的起始库仑效率和753.4 mAh/g的可逆容量,而没有碳复合的SnO2材料仅显示了39.8%的起始库仑效率和548 mAh/g的可逆容量。SnO2/C复合材料也展现了良好的循环性能和稳定的高倍率性能。这表明水热法低温引入碳是SnO2/C复合材料具有良好电化学性能的重要影响因素。 The SnO2/C composite was prepared by a facile low temperature hydrothermal procedure using SnO2 and glucose as raw materials.The pepared SnO/C composite were characterized by SEM,TEM,XRD,TG and electrochemical test system.The results showed that the composite is made up of spherical particles with the diameter of submicron size.The carbon content in the composite is about 1.5 wt%.As the anode active material for Li-ion batteries,the composite show an initial coulombic efficiency up to 52.7% and an initial reversible capacity as high as 753.4 mAh/g,while the bare SnO2 anode only show an initial coulombic efficiency of 39.8% and an initial reversible capacity of 548 mAh/g.The composite also exhibit an improved cycle durability and a stable high rate property.The improved electrochemical performance of the composite could be ascribed to the effect of the introduced-carbon which obtain by a low temperature hydrothermal reaction.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2010年第5期1211-1215,1226,共6页 Journal of Synthetic Crystals
基金 The project was supported by the National Natural Science Foundation of China(No.20871107) He'nan Outstanding Youth Science Fund(No.0612002700) the Natural Science Foundation of the Education of Henan province(No.2009A150031)
关键词 SnO2/C 库仑效应 可逆容量 SnO2/C coulombic efficiency reversible capacity
  • 相关文献

参考文献12

  • 1Wang Y D,Chen T.Nonaqueous and Template-free Synthesis of Sb Doped SnO2 Microspheres and Their Application to Lithium-ion Battery Anode[J].Electrochim.Acta,2009,54:3510-3515.
  • 2Chunjoong K,Mijung N,Myungsuk C,et al.Critical Size of a Nano SnO2 Electrode for Li-secondary Battery[J].Chem.Mater.,2005,17:3297-3301.
  • 3Chou S L,Wang J Z,Liu H K,et al.SnO2 Meso-scale Tubes:One-step,Room Temperature Electrodeposition Synthesis and Kinetic Investigation for Lithium Storage[J].Electrochem.Comm.,2009,11:242-246.
  • 4Lou X W,Li C M,Lynden A A.Designed Synthesis of Coaxial SnO2@Carbon Hollow Nanospheres for Highly Reversible Lithium Storage[J].Adv.Mater.,2009,21(24):2536-2539.
  • 5Wen Z H,Wang Q,Zhang Q,et al.In Situ Growth of Mesoporous SnO2 on Multiwalled Carbon Nanotubes:A Novel Composite with Porous-tube Structure as Anode for Lithium Batteries[J].Adv.Funct.Mater.,2007,17(15):2772-2778.
  • 6Wang Z Y,Chen G,Xia D G.Coating of Multi-walled Carbon Nanotube with SnO2 Films of Controlled Thickness and Its Application for Li-ion Battery[J].J.Power Sources.,2008,184:432-436.
  • 7Chen G,Wang Z Y,Xia D G.One-pot Synthesis of Carbon Nanotube@SnO2-Au Coaxial Nanocable for Lithium-ion Batteries with High Rate Capability[J].Chem.Mater.,2008,20:6951-6956.
  • 8Mei S B,Ning W,Wang Q W,et al.Effects of La2O3 Doping on Microstructure and Resistivity of SnO2 Based Ceramics[J].Journal of Synthetic Crystals.,2009,38(4):943-947.
  • 9Li C,Wei W,Fang S M,et al.A Novel CuO-nanotube/SnO2 Composite as the Anode Material for Lithium Ion Batteries[J].Journal of Power Sources.,2010,195:2939-2944.
  • 10Li C,Bi L,Fang S M,et al.Synthesis and Characterization of Y-doped SnO2 as Sensor Materials[J].J.Rare Earths,Spec.Issue.,2007,25:512-514.

同被引文献15

  • 1Wu Y P, Jiang C, Wu C, et al. Anode Materials for Lithium Ion Batteries from Oxidation of Common Natural Graphite [J] . Solid State Ionics, 2003,156(34) :283-290.
  • 2Coutts T J, Young D L, Li X, et al. Search for Improved Transparent Conducting Oxides: A Fundamental Investigation of CdO, Cd2 Sn04, and Zn2 Sn04 [J] . J. Vac. Sci. Technol. ,2000, A18 (6) :2646-2660.
  • 3Wu X, Coutts T J, Mulligan W P. Properties of Transparent Conducting Oxides Formed from CdO and ZnO Alloyed with Sn02 and In203 [J] . J. Vac. Sci. Technol. , 1997 ,A15 ( 3 ) : 1057 -1062.
  • 4Li Y F, Zheng X Z, Zhang H X, et al. Improving the Efficiency of Dye-Sensitized Zn2 Sn04 Solar Cells: The Role ·of Al3 + Ions [J] . Electro. Acta, 2011 ,56(25) :9257-9261.
  • 5Lin Y X, Lin S, Lou M H, et al. Enhanced Visible Light Photocatalytic Activity of Zn2 Sn04 via Sulfur Anion-Doping [J] . Materials Letters, 2009 ,63( 13-14) : 1169-1171.
  • 6Parle S, An. S, Ko. H, et al. Enhanced N02 Sensing Properties of Zn2 Sn04 -core/ZnO-shell Nanorod Sensors [J]. Ceramics International, 2013 ,39( 4) :3539-3545.
  • 7Sato Y S, Kiyohara J, Hasegawa A, et al. Study on Inverse Spinel Zinc Stannate, Zn2 Sn04, as Transparent Conductive Films Deposited by Rf Magnetron Sputtering[J]. Thin Solid Films ,2009 ,518( 4) : 1304-1309.
  • 8Rong A, Gao X P, Li G R, et al. Hydrothermal Synthesis of Zn2 Sn04 as Anode Materials for Li-Ion Battery [J] .]. Phys. Chern. B, 2006,110 (30) : 14754-14760.
  • 9Feng N, Peng S L, Sun X L, et al. Synthesis of Monodisperse Single Crystal Zn2Sn04 Cubes with High Lithium Storage Capacity[J]. Materials Letters ,2012,76 :66-68.
  • 10Kim K, Annamalai A, Park S H, et al. Preparation and Electrochemical Properties of Surface- Charge-Modified Zn2Sn04 Nanoparticles as Anodes for Lithium-Ion Batteries [J]. Electrochimica Acta ,2012 ,76: 192-200.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部