期刊文献+

丙酮丁醇梭菌的遗传操作系统 被引量:3

Genetic modification systems for Clostridium acetobutylicum
原文传递
导出
摘要 丙酮丁醇梭菌是极具潜力的替代燃料——生物丁醇的合成菌,受到各国研究者的普遍关注。丙酮丁醇梭菌菌株改造是生物丁醇产业化进程中的一项重要工作,其中遗传操作是核心内容之一。以下对丙酮丁醇梭菌的遗传操作系统的发展历史、种类和原理进行了综述,分析了目前几种遗传操作系统的局限性,并对其发展进行了展望。 Clostridium acetobutylicum, a biofuel-butanol producer, has attracted worldwide interests. Strain improvement is important for the process of biobutanol industrialization where efficient genetic modification systems are essential. In this review, the history of genetic modification systems of C. acetobutylicum was introduced, and the types and principles of these systems and their disadvantages are summarized and analysed. The development of updated genetic modification systems for C. acetobutylicum is also proposed.
出处 《生物工程学报》 CAS CSCD 北大核心 2010年第10期1372-1378,共7页 Chinese Journal of Biotechnology
基金 国家高技术研究发展计划(863计划)(No2006AA02Z237)资助~~
关键词 丙酮丁醇梭菌 丁醇 菌株改造 遗传操作系统 Clostridium acetobutylicum butanol strain improvement genetic modification systems
  • 相关文献

参考文献1

二级参考文献10

  • 1Green EM, Boynton ZL, Harris LM, et al. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 1996; 142 ( Pt 8):2079- 2086.
  • 2Nair RV, Green EM, Watson DE, Bennett GN, Papoutsakis ET. Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J Bacterial 1999: 181:319-330
  • 3Nakotte S, Schaffer S, Bohringer M, Durre E Electroporation of, plasmid isolation from and plasmid conservation in Clostridium acetobutylicum DSM 792. Appl Microbiol Biotechnol 1998; 50:564-567.
  • 4Harris LM, Welker NE, Papoutsakis ET. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacterial 2002; 184:3586-3597.
  • 5Chen Y, McClane BA, Fisher D J, Rood JI, Gupta P. Construction of an alpha toxin gene knockout mutant of Clostridium perfringens type A by use of a mobile group Ⅱ intron. Appl Environ Microbial 2005; 71:7542-7547.
  • 6Lee SY, Bennett GN, Papoutsakis ET. Construction of Escherichia-coli Clostridium-acetobutylicum shuttle vectors and transformation of Clostridium-acetobutylicum strains. B iotechnol Lett 1992; 14:427-432.
  • 7Harris LM, Desai RP, Welker NE, Papoutsakis ET. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 2000; 67:1-11.
  • 8Harris LM, Blank L, Desai RP, Welker NE, Papoutsakis ET. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol 2001; 27:322-328.
  • 9Lee SY, Mermelstein LD, Papoutsakis ET. Determination of plasmid copy number and stability in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Lett 1993; 108:319-323.
  • 10Heap JT, Pennington O J, Cartman ST, Carter GP, Minton NP. The ClosTron: A universal gene knock-out system for the genus Clostridium. J Microbiol Methods 2007; 70:452-464.

共引文献24

同被引文献67

  • 1Zhu L, Dong H, Zhang Y, et al. Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metab Eng, 2011, 13(4) :426-434.
  • 2Keiski V G, Pakkil. J, Ojamo H, et al. Challenges in biobutanol production: How to improve the efficiency? Renewable and Sustainable Energy Reviews, 2011, 15 ( 2 ) :964-980.
  • 3Ezeji T C, Qureshi N, Blaschek H P. Bioproduction of butanol from biomass: from genes to bioreactors. Curt Opin Biotechnol, 2007, 18(3) :220-227.
  • 4Liu S, Qureshi N. How microbes tolerate ethanol and butanol. N Biotechnol, 2009, 26(3-4) :117-121.
  • 5Ezeji T C, Qureshi N, Blaschek H P. Butanol fermentation research: upstream and downstream manipulations. The Chemical Record, 2004, 4(5) :305-314.
  • 6Ezeji T, Milne C, Price N D, et al. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol, 2010, 85(6) :1697-1712.
  • 7Jia K, Zhang Y, Li Y. Systematic engineering of microorganisms to improve alcohol tolerance. Eng Life Sei, 2010, 10(5) :422- 429.
  • 8Alsaker K V, Paredes C, Papoutsakis E T. Metabolite stress and tolerance in the production of biofuels and chemicals: gene- expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng, 2010, 105 (6) : 1131-1147.
  • 9Baek K T, Vegge C S, Skorko-Glonek J, et al. Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology. Appl Environ Microbiol, 2011, 77( 1 ) :57-66.
  • 10Tomas C A, Welker N E, Papoatsakis E T. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell. transcriptional program. Appl Environ Microbiol, 2003, 69(8) :4951-4965.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部