摘要
设B(H)是维数大于2的复可分Hilbert空间,B(H)代表H上所有有界线性算子全体,假设线性映射Ф:B(H)→B(H)满足对所有A,B∈B(H),[A^A.,B]=0时,有[Ф(A)^Ф(A).,B]+[A^A.,Ф(B)]=0.文中运用可交换迹双线性映射对Ф进行了刻画,证明了存在实数c∈R,算子T∈B(H)且T^*+T=cI,使得对任意X∈B(H),有Ф(X)=XT+T^*X.
Let H be a complex Hilbert space with dim H〉 2. B(H) denotes the set of all bounded linear operator on H, SupposeФ. B (H) → B (H) is a linear mapping satisfying [Ф(A)^Ф(A).,B]+[A^A.,Ф(B)]=0 whenever [A^A.,B]=0 for all A,B∈B(H) ,In this paper we apply trace bilinear mapping to characterize Ф and prove that there exists c ∈ R,T∈ B(H) and T+T^* = cI, such that Ф(X)= XT+T^* X for every X ∈ B (H).
出处
《安顺学院学报》
2010年第5期80-82,共3页
Journal of Anshun University