期刊文献+

α阶Lipschitz函数类上的最优恢复问题

THE OPTIMAL RECOVERING PROBLEM OF LIPSCHITZ FUNCTIONS OF α ORDER
下载PDF
导出
摘要 研究了定义在α阶Lipschitz函数类上的单点值算子f(t0),积分算子Int(f)利用噪声信息来实现最优恢复的问题,得到了信息半径的上,下界的估计以及最优的算法(或近似算法). Optimal recovering problem of single-valued operator f(t0), integral operator Int(f) defined on Lipschitz functions of α order is studied. Noise information was used to obtain estimates to upper and lower bounds on information radius, optimal algorithm (or approximation algorithm) was also obtained.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期565-568,共4页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(10771016)
关键词 信息算子 线性算法 信息半径 单点值算子 积分算子 information operator linear algorithm radius of information single-valued operator integral operator
  • 相关文献

参考文献7

  • 1Traub J F, Wozniakowski H, Wasilkowski G W. Information based complexit[M]. New York: Academic Press, 1988.
  • 2孙永生.函数逼近论[M].北京:北京师范大学,1988
  • 3Dorota Dabrowska, Linear algorithms for recovering linear functions from jittered information [J].J Complexity, 2003, 19:555.
  • 4Dorota Dabrowska. Jitter and measurement errors in approximation and integration of Lipschitz functions[J]. Numerical Algorithms, 2004, 35:45.
  • 5Dorota Dabrowska, Marek A Kowalski. Approximating Band-and Energy-Limited signals in the presence of jitter [J].J Complexity, 1998, 14:557.
  • 6Traub J F, Wozniakowski H. A general theory of optimal algorithms[M].New York: Academic Press, 1980.
  • 7Plaskota L. Noisy information and computational complexity [M]. Cambridge: Cambridge Univ Press, 1996.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部