期刊文献+

基于神经网络的铁路客运量优化预测 被引量:3

Railway Passenger Capacity Prediction Based on Neural Network Optimized by Genetic Algorithm
下载PDF
导出
摘要 研究铁路客运量的优化管理,可以为国家资源分配提供依据,铁路客运量预测对铁路企业的经营决策也有着良好的指导意义,针对传统RBF神经网络极易陷入局部最优问题,为了提高铁路客运量的预测精度,提出一种基于遗传优化RBF神经网络的铁路客运量预测方法(GA-RBFNN)。GA-RBFNN首先用遗传算法优化神经网络的参数,并在遗传进化过程中保留最优个体的方法,选择参数的最优解来建立最优预测模型。以我国1985-2008年铁路客运量数据对GA-RBFNN进行仿真,结果表明,采用经遗传算法优化后的RBF神经网络模型比传统RBF神经网络有更高的预测精度和收敛速度,适用于铁路客运量等非线性预测问题,具有较高的预测精度和应用价值。 In order to improve the forecasting performance of neural network and forecast the railway passenger capacity rate more accurately,a neural network optimized by Genetic Algorithm approach was proposed for forecasting railway passengers.capacity accurately.Aimed at the problem that BP algorithm is usually trapped to a local optimum and has a low speed of convergence,the Genetic Algorithm is used to optimize the connection weights of neural network.In the evalution processes the best individual is reserved and selected to build the forecasting model.The data from 1980 to 2008 is used to testify and analyze the performance of the proposed model.The result shows that the proposedmethod can obtain amore accurate result than the traditional RBF neural network.Therefore the RBF neural network improved by GA is suitable to solve nonlinear problems such as prediction of railway passenger capacity,and has high accuracy and application value.
作者 吴昕慧
出处 《计算机仿真》 CSCD 北大核心 2010年第10期168-170,174,共4页 Computer Simulation
关键词 铁路客运量 神经网络 遗传算法 预测 Railway passenger capacity Neural network Genetic algorithm Forecasting
  • 相关文献

参考文献6

二级参考文献25

  • 1张拥军,杜文.运输需求预测及其支持系统开发[J].铁道运输与经济,1996,18(4):18-23. 被引量:1
  • 2..中经网(教育版),.
  • 3李敏强,寇纪淞,林丹,李书全著.遗传算法的基本原理及应用!M].北京:科学出版社,2004-2.
  • 4金燕樵.铁路客运需求形势实证分析[J].铁道运输与经济,1997,19(5):21-23. 被引量:3
  • 5丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科技大学出版社,2003..
  • 6Niclsen R H. Kolmogorv's Mapping Neutral Network Existeuce Theorem[A]. Proc.IEEE First International Conference on Neural Networks[C], San Diego, 1987, Vol. 3:11 - 14
  • 7FRANSOO J C. An Aggregate Capacity Estimation Model for the Evaluation of Railroad Passing Constructions[J]. Transportation Research Part A, 2000, (34): 3-49.
  • 8LIU Si-feng, DENG Ju-long.The Range Suitable for GM(1,1)[J].The Journal of Grey System, 1999, 11(1): 131-138.
  • 9DENG Ju-long.Properties of Relational Space for Grey Systems[M].Beijing:China Ocean Press,1988.
  • 10ZHA Jin-mao.Grey Relation Matrix Analysis:Grey Judgement Model[J].The Journal of Grey System,1995,4.

共引文献182

同被引文献13

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部