期刊文献+

一维纳米材料导热性能的分子动力学模拟 被引量:7

MOLECULAR DYNAMICS SIMULATION ON THERMAL CONDUCTIVITY OF ONE DIMENISON NANOMATERIALS
原文传递
导出
摘要 采用基于线性响应理论的非平衡分子动力学模拟方法,通过3体Tersoff势函数描述原子间的相互作用,模拟了C,BN和SiC纳米管的热传导过程.研究了轴向长度、温度和外加拉伸应变等因素对3种纳米管的轴向热导率的影响,并对3种纳米管的导热性能进行了比较.结果表明:纳米管的热导率k随着轴向长度L的增加而增加,两者大致呈k∝L~α关系,与求解声子传输方程得到的理论解一致;纳米管的热导率随温度升高而降低;随着轴向拉伸应变的增大,纳米管的热导率有先增加后降低的转变趋势,但3种纳米管的热导率发生转变时对应的拉伸应变不同;相同条件下3种纳米管的热导率从大到小依次为:C,BN和SiC. The Non-equilibrium molecular dynamics(NEMD) simulation method which is based on the linear response theory is applied to simulate the thermal conduction process of C,BN and SiC nanotubes.The three-body Tersoff potential is used to simulate the interactions among atoms.The effects of axial length,temperature and tensile strain on the axial thermal conductivity of the three kinds of nanotubes are investigated,and their thermal conductivities are compared and analyzed.The simulation results show that the axial thermal conductivity increases as the axial length increases,and exhibits a relationshipκ∝L~αthat is in agreement with the solution of Boltzmann-Peierls phonon transport equation(B-P equation).It is found that the thermal conductivity of nanotube decreases with the increase of temperature.As the tensile strain increases,the thermal conductivity of nanotubes show an slight increase first,and then decreases.But,the corresponding tensile strains at which the tendency of thermal conductivity of the three nanotubes changes are different.Under the same conditions,the sequence of thermal conductivity from the biggest to the smallest is in the order of carbon nanotubes,boron nitride nanotubes and carbon silicon nanotubes.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2010年第10期1244-1249,共6页 Acta Metallurgica Sinica
基金 国家自然科学基金资助项目10772062~~
关键词 非平衡分子动力学 纳米管 热导率 non-equilibrium molecular dynamics simulation nanotube thermal conductivity
  • 相关文献

参考文献3

二级参考文献35

  • 1陈慧,陈云飞,陈敏华,毕可东.填充氩后单壁碳纳米管的导热系数[J].东南大学学报(自然科学版),2006,36(3):416-419. 被引量:5
  • 2毕可东,陈云飞,杨决宽,陈敏华.不同结构单壁碳纳米管热传导的分子动力学模拟[J].东南大学学报(自然科学版),2006,36(3):420-422. 被引量:3
  • 3Iijima S. Helical. Microtubes of graphitie [J]. Nature, 1991, 354 (6348):56-58.
  • 4RouffR S, Lorents. D.C. Mechanical and thermal properties of carbon nanotubes [J]. Carbon, 1995, 33:925-930.
  • 5Mingo N, Broido D A. Length dependence of carbon nanotube thermal conductivity and the " problem of long waves" [J]. Nano Letters, 2005, 5(7):1221-1225.
  • 6Hone J, Whitney M. Thermal Conductivity of Single-Walled Carbon Nanotubes [J]. Phsy. Rev B. , 1999, 59:2514-2516.
  • 7Chang C W, Wei-Qiang Han, Zettl A. Thermal Conductivity of B-C-N and BN nanotubes [J]. Apply Physics Letters, 2005, 86:173102.
  • 8R Fletcher, C Reeves. Function minimization by conjugate gradients [J]. The Computer Journal, 1964, 7 :149 -154.
  • 9Roland PassIer. Basic moments of phonon density of states spectra and characteristic phonon temperatures of group of Ⅳ, Ⅲ-Ⅴ, and Ⅱ- Ⅵ materials [J]. J. Appl. Phys, 2007, 101(093513) :1-12.
  • 10Allen M P, Tildesley D J. Computer Simulation of Liquids [M]. Oxford: Clarendon Press,1987.

共引文献16

同被引文献89

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部