期刊文献+

基于广义子空间法的脑电诱发电位单导少次提取

The Brain Evoked Potential Estimation with Few-trial of Single Channel Signals based on Generalized Subspace Approach
下载PDF
导出
摘要 脑电诱发电位(EP)的单导少次提取一直是生物医学信号处理领域倍受关注的问题。本研究提出一种广义子空间法用于EP信号的单导少次提取问题中,实现对观测信号的滤波降噪得到EP信号在最小均方误差意义下的最佳估计。该算法的核心是首先利用投影矩阵将信号和噪声同时投影到系数空间,再根据观测信号和噪声的自相关矩阵得到系数加权矩阵,估计出信号的投影系数,最后利用重构矩阵进行重构得到期望的EP信号。仿真实验在不同初始信噪比条件下进行算法测试和性能分析,该算法较好地抑制了自发脑电的干扰,使信噪比获得了较大程度的提高。 The signal estimation of single channel brain evoked potential(EP) with few-trial is of great interest.In this paper,a generalized subspace approach was proposed to realize the optimum estimate of EP signals from the observable noisy signals with minimum mean square error(MSE) criterion.The underlying principle was to project the signals and noises into signal and noise coefficient subspace respectively by applying a projection matrix at first.Then,a coefficient weighting matrix was achieved based on the autocorrelation matrix of the noises and the noisy signals.Afterwards,the projection coefficients of the signal were estimated with the weighting matrix.EP signals were estimated with the reconstruction matrix.Simulation experiments were carried out to test and analyze the performance of the algorithm for the EP signals estimation in different signal-to-noise ratio(SNR) conditions.The interference of spontaneous electroencephalogram(EEG) was eliminated a lot with significantly improved SNR.The simulations results demonstrated the effectiveness and superior performance of the proposed method.
机构地区 大连理工大学
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2010年第5期660-664,共5页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(30570475,60872122,60940023)
关键词 广义子空间法 脑电诱发电位 滤波矩阵 系数加权矩阵 generalized subspace approach brain evoked potential filter matrix coefficient weighting matrix
  • 相关文献

参考文献13

  • 1潘映辅.临床诱发电位学(第2版)[M].北京:人民卫生出版社,2000.
  • 2Stefanos DG,Perttu OR,Mika PT,et al.Single-trial dynamical estimation of event-related potentials:A kalman filter-based approach[J].IEEE Transactions on Biomedical Engineering,2005,52(8):1397-1406.
  • 3Qiu Wei,Kenneth SM,Francis HY,et al.Adaptive filtering of evoked potentials with radial basis function neutral network prefiher[J].IEEE Transactions on Biomedical Engineering,2002,49 (3):225-231.
  • 4Wang Zhisong,Alexander M,David A,et al.Single-trial evoked potential estimation using wavelets[J].Computers in Biology and Medicine,2007,37 (4):463-473.
  • 5Quirogn R,Garcia H.Single-trial event-related potentials with wavelet denoising[J].Clin Neurophysiol,2003,114:376-390.
  • 6毕晓辉,邱天爽,朱勇,赵燕斌.基于经验模式分解和独立分量分析的单导少次EP信号提取[J].中国生物医学工程学报,2008,27(6):817-821. 被引量:2
  • 7Aapo H,Erkki O.Independent component analysis:algorithms and applications[J].Neural Networks,2000,13 (4-5):411-430.
  • 8Kumaresan R,Tufts DW.Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise[J].IEEE Transaction on Acoustics,Speech and Signal Processing,1982,30(6):833-840.
  • 9Overschee PV,Moor BD.Subspace Identification for Linear Systems[M].Boston:Kluwer Academic Publishers,1996.
  • 10Ephraim Y,Trees HLV.A signal subspaee approach for speech enhancement[J].IEEE Transactions on Speech and Audio Processing,1995,3 (4):251-266.

二级参考文献10

  • 1Kong Xuan, Qiu Tianshuang. Latency change estimation for evoked potentials via frequency selective adaptive phase spectrum analyzer [J]. IEEE Trails on Biomedical Engineering, 1999, 46(8): 1004 - 1012.
  • 2Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Trans Neural Networks, 1999, 10 (3) : 626 - 634.
  • 3Lecumberri P, Valencia M, Gomez M, et al. Simultaneous extraction and localization of dipolar independent components in evoked potentials [ A ]. In: Proceedings of the 25th Annual International Conference of the IEEE EMBS[ C ]. Cancun, Mexico : IEEE-EMBS,2003. 2109 - 2112.
  • 4Huang Norden E, Shen Zheng, Long SR, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis [ A]. In: Proceedings of the Royal Society [C]. London: The Royal Society, 1998, 454: 903-995.
  • 5Rilling G, Flandrin P, Goncalves P. On Empirical Mode Decomposition and its Algorithms [ A]. In: IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing [ C ]. 2003. NSIP-03, Grado (I).
  • 6Barres AK, Vigario R, Jousmaki V, et al. Extraction of Event- Related Signals from Multichannel Bieeleetrical Measurements [J]. IEEE Transaction on Biomedical Engineering, 2000, 47(5) : 583 - 588.
  • 7Yu Danjiang, Ren Weixin. EMD-based stochastic subspace identification of structures from operational vibration measurements [J]. Engineering Structures, 2005, 27: 1741- 1751.
  • 8朱常芳,胡广书.诱发电位快速提取算法的新进展[J].国外医学(生物医学工程分册),2000,23(4):211-216. 被引量:12
  • 9洪波,唐庆玉,杨福生,潘映辐,陈葵,铁艳梅.ICA在视觉诱发电位的少次提取与波形分析中的应用[J].中国生物医学工程学报,2000,19(3):334-341. 被引量:52
  • 10张旭秀,邱天爽.基于源信号统计独立性的ICA方法的不确定性研究[J].系统工程与电子技术,2004,26(4):556-559. 被引量:6

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部