期刊文献+

An Improved r-Adaptive Galerkin Boundary Element Method Based on Unbalanced Haar Wavelets

An Improved r-Adaptive Galerkin Boundary Element Method Based on Unbalanced Haar Wavelets
原文传递
导出
摘要 An r-adaptive boundary element method(BEM) based on unbalanced Haar wavelets(UBHWs) is developed for solving 2D Laplace equations in which the Galerkin method is used to discretize boundary integral equations.To accelerate the convergence of the adaptive process,the grading function and optimization iteration methods are successively employed.Numerical results of two representative examples clearly show that,first,the combined iteration method can accelerate the convergence;moreover,by using UBHWs,the memory usage for storing the system matrix of the r-adaptive BEM can be reduced by a factor of about 100 for problems with more than 15 thousand unknowns,while the error and convergence property of the original BEM can be retained. An r-adaptive boundary element method(BEM) based on unbalanced Haar wavelets(UBHWs) is developed for solving 2D Laplace equations in which the Galerkin method is used to discretize boundary integral equations.To accelerate the convergence of the adaptive process,the grading function and optimization iteration methods are successively employed.Numerical results of two representative examples clearly show that,first,the combined iteration method can accelerate the convergence;moreover,by using UBHWs,the memory usage for storing the system matrix of the r-adaptive BEM can be reduced by a factor of about 100 for problems with more than 15 thousand unknowns,while the error and convergence property of the original BEM can be retained.
出处 《Wuhan University Journal of Natural Sciences》 CAS 2010年第6期488-494,共7页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science Foundation of China (10674109) the Doctorate Foundation of Northwestern Polytechnical University (CX200601)
关键词 r-adaptive unbalanced Haar wavelets Galerkin boundary element method(BEM) sparse matrix r-adaptive unbalanced Haar wavelets Galerkin boundary element method(BEM) sparse matrix
  • 相关文献

参考文献14

  • 1Kita E, Kamiya N. Recent studies on adaptive boundary element methods[J]. Adv Eng Software, 1994, 19: 21-32.
  • 2Kita E, Kamiya N. Error estimation and adaptive mesh refinement in boundary element method, an overview[J]. Eng Anal Boundary Elern, 2001, 25: 479-495.
  • 3Ingber M S, Mitra A K. Grid optimization for the boundary element method[J], lnt J Numer Meth Eng, 1986, 23: 2121- 2136.
  • 4lngber M S, Mitra A K. Grid redistribution based on measurable error indicators for the direct boundary element method[J]. Eng Anal Boundary Elem, 1992, 9:13-19.
  • 5Lage C, Schwab C. Wavelet Galerkin algorithms for boundary integral equations[J]. SIAMJ Sci Comput, 1999, 20(6): 2195- 2222.
  • 6Dahmen W, Harbrecht H, Schneider R. Compression techniques for boundary integral equations optimal complexity estimates[J]. SIAM J Numer Anal, 2006, 43(6): 2251-2271.
  • 7Xiao J, Tausch J, Hu Y. A-posteriori compression of wavelet-BEM matrices[J]. Computational Mechanics, 2009, 44(5): 705-715.
  • 8Abe K, Koro K, Itami K. An h-hierarchical Galerkin BEM using Haar wavelets[J]. Eng Anal Boundary Elem, 2001, 25: 581-591.
  • 9Sweldens W. The lifting scheme: A construction of second generation wavelets[J]. SlAM J Math Anal, 1998, 29(2): 511-546.
  • 10Sweldens W. The lifting scheme: A custom-design construction of biorthogonal wavelets[J]. Appl Comput Harmon Anal, 1996, 3(2): 186-200.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部