摘要
An r-adaptive boundary element method(BEM) based on unbalanced Haar wavelets(UBHWs) is developed for solving 2D Laplace equations in which the Galerkin method is used to discretize boundary integral equations.To accelerate the convergence of the adaptive process,the grading function and optimization iteration methods are successively employed.Numerical results of two representative examples clearly show that,first,the combined iteration method can accelerate the convergence;moreover,by using UBHWs,the memory usage for storing the system matrix of the r-adaptive BEM can be reduced by a factor of about 100 for problems with more than 15 thousand unknowns,while the error and convergence property of the original BEM can be retained.
An r-adaptive boundary element method(BEM) based on unbalanced Haar wavelets(UBHWs) is developed for solving 2D Laplace equations in which the Galerkin method is used to discretize boundary integral equations.To accelerate the convergence of the adaptive process,the grading function and optimization iteration methods are successively employed.Numerical results of two representative examples clearly show that,first,the combined iteration method can accelerate the convergence;moreover,by using UBHWs,the memory usage for storing the system matrix of the r-adaptive BEM can be reduced by a factor of about 100 for problems with more than 15 thousand unknowns,while the error and convergence property of the original BEM can be retained.
基金
Supported by the National Natural Science Foundation of China (10674109)
the Doctorate Foundation of Northwestern Polytechnical University (CX200601)