期刊文献+

Simulation Study of SVM-Based Approach in Extracting Parameters for Electromagnetic Detection of Buried Object

Simulation Study of SVM-Based Approach in Extracting Parameters for Electromagnetic Detection of Buried Object
原文传递
导出
摘要 In this paper,a new method for extracting the parameters of buried object is proposed.The center position and dielectric properties of 2-D buried object are estimated by means of a regression technique based on support vector machine(SVM).The proposed method,after a proper training procedure,is able to reconstruct the center position and dielectric properties of a buried object inside a given investigation domain.Numerical simulation results indicate that SVM-based approach shows higher accuracy than the back-propagation neural networks(BPNN) algorithm. In this paper,a new method for extracting the parameters of buried object is proposed.The center position and dielectric properties of 2-D buried object are estimated by means of a regression technique based on support vector machine(SVM).The proposed method,after a proper training procedure,is able to reconstruct the center position and dielectric properties of a buried object inside a given investigation domain.Numerical simulation results indicate that SVM-based approach shows higher accuracy than the back-propagation neural networks(BPNN) algorithm.
出处 《Wuhan University Journal of Natural Sciences》 CAS 2010年第6期510-515,共6页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science Foundation of China (50679037,60671040)
关键词 buried object detection inverse scattering support vector machine(SVM) buried object detection inverse scattering support vector machine(SVM)
  • 相关文献

参考文献16

  • 1Caorsi S, Gragnani G, Pastorino M. Numerical electromagnetic inverse-scattering solutions for two-dimensional infinite dielectric cylinders buried in a lossy half-space[J]. IEEE Trans on Microwave Theory and Techniques, 1993, 41(2): 352-356.
  • 2Joachimwicz N, Pichot C, Hugonin J P. Inverse scattering an iterative numerical method for electromagnetic imaging[J]. IEEE Trans on Antennas and Propagation, 1991, 39(12):1742-1753.
  • 3Chiu T J, Chew W C, Aydiner A A, et al. Inverse scattering of 2D dielectric objects buried in a lossy using the distorted Born iterative method[J]. IEEE Trans Geosei Remote Sens, 2000, 38(6): 1-9.
  • 4Lobel P, Pichot C, Blanc-Feraud L, et al. A new regularization scheme for inverse scattering problems[J]. Inverse Problems, 1997, 13: 403-410.
  • 5Caorsi S, Massa A, Pastorino M. A computational technique based on a real-coded genetic algorithm for microwave imaging purposes[J]. IEEE Trans Geosci Remote Sens, 2000, 38(4): 1697-1708.
  • 6Caorsi S, Gamba P. Electromagnetic detection of dielectric cylinders by a neural network approach[J]. IEEE Trans Geosci Remote Sens, 1999, 37(2): 820-827.
  • 7Mydur R, Michalski K A. A neural-network approach to the electromagnetic imaging of elliptic conducting cylinders[J]. Microwave Opt Technol Lett, 2001, 28(5): 303-306.
  • 8Rekanos I T. On-line inverse scattering of conducting cylinders using radius basis-functions neural networks[J]. Microwave Opt Technol Lett, 2001, 28: 378-380.
  • 9Bermani E, Caorsi S, Raffetto M. An inverse scattering approach based on a neural network technique for the detection of dielectric cylinders buried in a lossy half-space[J]. Progress in Electromagnetic Research, 2000, 26: 69-90.
  • 10Bermani E, Caorsi S, Raffetto M. Microwave detection and dielectric characterization of cylindrical objects from amplitude-only data by means of neural network[J]. IEEE Trans on Antennas and Propagation, 2002, 50(9): 1309-1314.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部