期刊文献+

带潜伏期和年龄结构流行病模型的稳定性

Stability of an Age-structured Epidemic Model with Latent Period
下载PDF
导出
摘要 根据肺结核的传播特点,建立了带潜伏期和潜伏年龄的数学模型.证明了当基本再生数R0<1时,系统无病平衡点是局部和全局渐近稳定的;当R0>1时,无病平衡点不稳定,此时系统存在一个地方病平衡点,并证明了该地方病平衡点是局部渐近稳定的. Based on the infection characteristics of TB,an age-structured epidemic model with latent period is studied.It is proved that the disease-free equilibrium is locally and globally asymptotically stable if R0〈1,one endemic equilibrium exists if R0〉1,and the stability conditions of endemic equilibrium are also given.
出处 《许昌学院学报》 CAS 2010年第5期4-8,共5页 Journal of Xuchang University
关键词 潜伏年龄 基本再生数 地方病平衡点 稳定性 the age of latent the basic reproductive number endemic equilibrium stability
  • 相关文献

参考文献7

  • 1Feng Z,Innelli M,Milner F A.A Two-Strain TB Model with Age of Infection[J].SIAM J.Appl.Math.,2002,62:1634-1656.
  • 2Castillo-Chavez C,Feng Z.To Treat or not to Treat:The Case of Tuberculosis[J].J.Math.Biol.,1997,35:629-659.
  • 3Dye C,Espinal M A.Will Tuberculosis Become Resistant to All Antibiotics[J].Proc.Roy.Soc.London Ser.B Biol.Sci.,2001,268:45-52.
  • 4Dye C,Williams B G.Criteria for the Control of Drug-Resistant Tuberculosis[J].Proc.Natl.Acad.Sci.USA,2000,97:8180-8185.
  • 5Feng Z,Castillo-Chavez C,Capurro A.A Model for TB with Exogenous Reinfection[J].Theoretical Population Biology,2000,57:235-247.
  • 6Feng Z,Huang W,Castillo-Chavez C.On the Role of Variable Latent Period i Mathematical Models for Tuberculosis[J].J.Dynam.Differential Equations,2001,13:425-452.
  • 7Sabin A B.Measles:Killer of Millions in Developing Countries:Strategies of Elimination and Continuing Control[J].Eur.J.of Epid.,1991,7:1-22.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部