期刊文献+

漩涡撞击法烧结脱硫烟气流场仿真研究 被引量:1

Simulation studies on the flow field of sintering flue gas during vortex collision desulfurization
原文传递
导出
摘要 采用Fluent软件对均气环、冷却预处理器和漩涡撞击元件三项关键技术进行模拟仿真,并用MATLAB拟合其对烟气流场的影响规律.结果表明:烟气分布最优时,均气环安装位置与宽度呈线性关系时;冷却预处理器喷水速度越大,烟气温度越低,当喷水速度大于30m.s-1时,随着喷水量增大,温度变化不明显,最佳喷水速度范围为25~30m.s-1;压力损失随漩涡撞击元件切向速度的增大而增大,当切向速度大于20m.s-1时,压力损失急剧上升,漩涡撞击元件最大切向速度应该控制在20m.s-1左右,即托盘转速应该为85r.min-1左右. ABSTRACT Fluent software was used to numerically simulate the functions of three key components (gas distributed ring, cooling pre-processor, and vortex collision component) during vortex collision desulfurization. The influence rules of the three components on the flow field of sintering flue gas were fit with MATLAB software, It is shown that under the optimal distribution of flue gas the installa- tion location of the gas distributed ring is linear with the ring width. The greater the water-jet velocity from the cooling pre-processor, the lower the temperature of flue gas is. When the water-jet velocity exceeds 30 m·s ^-1, the temperature of flue gas does not change sig- nificantly with increasing water-jet velocity; as a result, the best range of water-jet velocity is 25 to 30 m·s^-1. The pressure loss of flue gas increases with the tangential velocity of the vortex collision component increasing. When the tangential velocity is over 20 m·s^-1, the pressure loss rises sharply. The tangential velocity of the vortex collision component should be controlled at about 20 m·s^-1 , indica- ting that the rotational speed of the tray is about 85 r.min^-1.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2010年第10期1333-1339,共7页 Journal of University of Science and Technology Beijing
关键词 烧结 烟气 脱硫 设备 数值模拟 sintering flue gas desulfurization equipments numerical simulation
  • 相关文献

参考文献9

  • 1王晓泳.我国烧结脱硫现状分析[J].工业安全与环保,2007,33(12):25-27. 被引量:16
  • 2李先春,谢安国.炉内喷钙脱硫过程中炉膛温度及脱硫剂混合的数值模拟[J].冶金能源,2005,24(3):23-26. 被引量:4
  • 3Yuan X J, Li W. ]'he influence of various gas inlets on gas distribution in packed columns//Instruction of Chemical Engineers Symposium Series No. 142, 1997:931 -938.
  • 4Meng L, Yang C P, Gan H M, et al. Pierced cylindrical gas inlet device for sulfur dioxide removal from waste gas streams. Sep Purif Technol,2008, 63 ( 1 ) :86.
  • 5Fang L J, Song H P, Zhou Q L, et al. Experimental study on the performance of heat transfer of a novel liquid-gas two-phase flow scrubber for flue gas desulphurization // Proceedings of the ASME Power Conference. Chicago, 2005:775.
  • 6Harter 1, Boy~er C, Raynal L, et al. Flow distribution studies applied to deep hydro-desulphurization, htd Eng Chem Res, 2001, 40(23 ) :5262.
  • 7Zhang J, You C F, Qi H ~, et al. Effect of operating parameters and reactor structure on moderate temperature dry desulphurization. Environ Sci Technol, 2006, 40:4300.
  • 8Zeng F, Yin L Q, Chen L. Numerical simulation and optimized design of the wet flue gas desulphurization spray tower//Challenges of Power Engineering and Environment. Hangzhou: Zhejiang University Press, 2007:783.
  • 9Renedo M J, Gonzalez F, Pesquera C, et al. Study of sorbents prepared from clays and CaO or Ca(OH) 2 for SO2 removal at low temperature.Ind Eng Chem Res, 2006, 45 : 3752.

二级参考文献11

共引文献17

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部