期刊文献+

强化生物除磷系统除磷特性对水温变化响应的试验研究 被引量:5

Effect of water temperature variation on phosphorus removal characteristics in an enhanced biological phosphorus removal system
原文传递
导出
摘要 以富集聚磷菌(Phosphorus Accumulating Organisms,PAOs)的活性污泥为基础,研究了强化生物除磷(Enhanced Biological Phosphorus Removal,EBPR)系统的磷酸盐去除特性对温度升高和恢复的响应.结果表明,水温从20℃分别上升到25、30和35℃3种状态持续运行8d后,EBPR系统厌氧释磷和好氧吸磷受到明显抑制,系统磷酸盐去除率显著下降.20℃对照处理系统的磷酸盐去除率约为80.3%,而35℃的升温处理其磷酸盐去除率为0,说明此系统处于崩溃状态.当所有处理系统水温恢复到20℃运行后,25℃处理系统经过1d的恢复,磷酸盐去除率可恢复至80%,30℃处理系统经过5d的恢复,磷酸盐去除率可达80%,而35℃处理系统则无法恢复到原来的状态.此外,水温上升到25、30和35℃分别运行8d后,系统内厌氧胞内聚合物(PHA)的合成量和好氧PHA的消耗量随着反应器内水温的升高而增加.20℃对照处理系统的厌氧PHA合成量约为0.03mg·mg-1(以污泥计,下同),好氧PHA消耗量约为0.06mg·mg-1;35℃升温处理系统的厌氧PHA合成量约为0.11mg·mg-1,好氧PHA消耗量约为0.12mg·mg-1.当所有处理水温恢复到20℃运行后,升温处理的反应器内厌氧PHA合成量和好氧PHA消耗量都明显降低. Using activated sludge with successful enrichment of phosphorus accumulating organisms (PAOs) ,the response of phosphorus removal characteristics in an enhanced biological phosphorus removal (EBPR) system to water temperature was measured in this study. Anaerobic phosphorus release and aerobic phosphorus uptake were clearly inhibited,and phosphorus removal rate dropped dramatically with increased water temperature in the EBPR system. The phosphorus removal rate remained at 80. 3% for the control at 20℃ all the time,while it was 0 for all 8 days of 35℃ treatment,which suggested that the EBPR system did not work at high temperature. When the water temperature of all treatments was adjusted to 20℃,the phosphorus removal rate could reach 80% after one day of recovery from 25℃ treatment,and after five days of recovery for 30℃ treatment. However,for the 35℃ treatment it could not be restored to its original status. Moreover,the capacity of anaerobic polyhydroxyalkanoate (PHA) synthesis and aerobic PHA consumption increased with the water temperature. We observed about 0. 03 mg·mg^-1 (based on sludge) anaerobic PHA synthesis,and about 0. 06 mg·mg^-1 aerobic PHA consumption in the EBPR system at 20℃ all the time,while the values were 0. 11 mg·mg^-1 and 0. 12 mg·mg^-1,respectively, for 35℃ treatment over eight days. The capacity of anaerobic PHA synthesis and aerobic PHA consumption decreased significantly in the treatments with increased water temperature even when they were returned to 20℃.
出处 《环境科学学报》 CAS CSCD 北大核心 2010年第11期2197-2204,共8页 Acta Scientiae Circumstantiae
基金 浙江省自然科学基金重点资助项目(NoZ507721) 浙江省教育厅科研资助项目(NoY200804075) 浙江省高等学校创新团队支持计划资助项目(NoT200912)~~
关键词 强化生物除磷 胞内聚合物 聚磷菌 活性污泥工艺 水温变化 enhanced biological phosphorus removal polyhydroxyalkanoates phosphorus accumulating organisms activated sludge process water temperature variation
  • 相关文献

参考文献30

  • 1Arun V, Mino T, Matsuo T. 1988. Biological mechanisms of acetate up take mediated by carbohydrate consumption in excess phosphorus removal systems [ J]. Water Research, 22:565-570.
  • 2Brdjanovic D, Hooijmans C M, van Loosdrecht M C, et al. 1996. The dynamic effects of potassium limitation on biological phosphorus removal [J]. Water Research, 30 (10): 2323-2328.
  • 3Brdjanovic D, Slamet A, van Loosdrecht M C, et al. 1998. Impact of excessive aeration on biological phosphorus removal from wastcwater [J]. Water Research, 32 (1): 200-208.
  • 4Erdal U G, Erdal Z K, Randall C W. 2003. The competition between PAOs (phosphorus accumulating organisms) and GAOs (glycogen accumulating organisms) in EBPR ( enhanced biological phosphorus removal) systems at different temperatures and the effects on system performance [ J]. Water Science and Technology, 47 (11 ) : 1-8.
  • 5高宇.SBR生物除磷的研究进展[J].重庆工商大学学报(自然科学版),2005,22(1):30-34. 被引量:5
  • 6Greenburg A E, Levin G, Kauffman W J. 1955. The effect of phosphorus removal on the activated sludge process [ J ]. Sewage and Industrial Wastes, 27:277-282.
  • 7Griffiths P C, Stratton H M, Seviour R J. 2002. Environmental factors contributing to the "G bacteria" population in full-scale EBPR plants [J]. Water Science and Technology, 46 (4-5) : 185-192.
  • 8KubaT, Wachtmeister A, Vanloosdrecht M C, et al. 1994. Effect of nitrate on phosphorus release in biological phosphorus removal systems [J]. Water Science and Technology, 30 (6) : 263-269.
  • 9Liu Y, Chen Y G, Zhou Q. 2007. Effect of initial pH control on enhanced biological phosphorus removal from wastewater containing acetic and propiouic acids [ J ]. Chemosphere, 66 : 123-129.
  • 10刘燕,陈银广,郑弘,周琪.乙酸丙酸比例对富集聚磷菌生物除磷系统影响研究[J].环境科学学报,2006,26(8):1278-1283. 被引量:28

二级参考文献87

  • 1王亚宜,彭永臻,王淑莹,宋学起,王少坡.碳源和硝态氮浓度对反硝化聚磷的影响及ORP的变化规律[J].环境科学,2004,25(4):54-58. 被引量:64
  • 2肖华胜,王银善.假单胞菌WS—5的分离及降解甲胺磷某些性质的研究[J].中国环境科学,1995,15(6):464-469. 被引量:32
  • 3刘燕,行智强,陈银广,周琪.聚烃基烷酸转化对强化生物除磷影响研究[J].环境科学,2006,27(6):1103-1106. 被引量:19
  • 4Seviour R J, Mino T, Onuki M. The microbiology of biological phosphorus removal in activated sludge systems [ J]. FEMS Microbiol Rev, 2003, 27: 99-127.
  • 5Mulkerrins D, Dobson A D W, Colleran E. Parameters affecting biological phosphate removal from wastewaters [ J ]. Environment International, 2004, 30: 249-259.
  • 6Petersen B, Temmink H, Henze M, et al. Phosphate uptake kinetics in relation to PHB under aerobic conditions [ J]. Water Res, 1998, 32(1): 91-100.
  • 7Randall A A, Liu Y. Polyhydroxyalkanoates form potentially a key aspect of aerobic phosphorus uptake in enhanced biological phosphorus removal [J]. Water Res, 2002, 36: 3473-3478.
  • 8Smolders G J F, Vandermeij J, Vanloosdrecht M C M, et al. A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process [ J ]. Biotechnol Bioeng, 1995, 47(3) : 277-287.
  • 9Oehmen A, Zeng R J, Saunders A M, et al. Anaerobic and aerobic metabolism of glycogen accumulating organisms selected with propionate as the sole carbon source [J]. Microbiology, 2006, 152 (9) : 2767-2778.
  • 10Thomas M, Wright P, Blackall L L, et al. Optimisation of Noosa BNR plant to improve performance and reduce operating costs [ J ]. Water Sci Technol, 2003, 47(12): 141-148.

共引文献57

同被引文献73

  • 1凌霄,胡勇有,马骥.曝气生物滤池铝盐化学强化与生物协同除磷[J].环境科学学报,2006,26(3):409-415. 被引量:27
  • 2刘燕,陈银广,郑弘,周琪.乙酸丙酸比例对富集聚磷菌生物除磷系统影响研究[J].环境科学学报,2006,26(8):1278-1283. 被引量:28
  • 3Erdal U G, Erdal Z K, Randall C W. 2003. The competition between PAOs (phosphorus accumulating organisms) and GAOs (glycogen accumulating organisms) in EBPR ( enhanced biological phosphorus removal) systems at different temperatures and the effects on system performance [J]. Water Science and Technology, 47 ( 11 ) : 1-8.
  • 4Fuhs G W, Chen M. 1975. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater [ J ]. Microbial Ecology,2 (2) : 119-138.
  • 5Gillan D, Speksnijder A, Zwart G,et al. 1998. Genetic diversity of the biofilm covering Montacuta ferruginosa (Mollusca, Bivalvia) as evaluated by denaturing gradient gel electrophoresis analysis and cloning of PCR amplified gene fragment coding for 16S rDNA [J]. Applied and Environmental Microbiology, 64 (9) : 3464-3472.
  • 6Kuba T, Wachtmeister A, Vanloosdrecht M C, et al. 1994. Effect of nitrate on phosphorus release in biological phosphorus removal systems [J]. Water Science and Technology, 30 (6): 263-269.
  • 7Lopez-Vazquez C, Hooijmans C, Brdjanovic D, et al. 2009. Temperature effects on glycogen accumulating organisms [J]. Water Research, 43 (11) : 2852-2864.
  • 8Lopez-Vazquez C, Song Y I, Hooijmans C M, et al. 2007. Short term temperature effects on the anaerobic metabolism of glycogen accumulating organisms [ J ]. Biotechnology and Bioengineering, 97 (3) : 483 -495.
  • 9Lopez-Vazquez C, Song Y I, Hooijmans C M, et al. 2008. Temperature effects on the aerobic metabolism of glycogen-accumulating organisms [J]. Biotechnology and Bioengineering, 101 (2) : 295-306.
  • 10Mainstone C P, Parr W. 2002. Phosphorus in rivers-ecology and management [J]. Science of the Total Environment, 282:25-47.

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部