期刊文献+

液相中气相成核率的分子动力学模拟 被引量:1

MOLECULAR DYNAMICS SIMULATION OF BUBBLE NUCLEATION IN SUPERHEATED LIQUID
原文传递
导出
摘要 本文运用分子动力学模拟方法对氩过热液相中的气相成核过程进行了研究。模拟结果表明液相中形成气泡经历三个过程:一是诱导过程,系统压力基本维持不变;二是气化核心形成,产生大量小气核,系统压力快速上升;三是小气核聚合形成大气核,系统压力缓慢增大至平衡。模拟得到了液相中的气相成核率,较经典成核理论(CNT)预测的气相成核率大8个数量级。随着模拟系统密度以及过热度的增大,液相中的气相成核率也随之增大,与CNT的结论一致。 The bubble nucleation in superheated Ar liquid is studied by molecular dynamics simulation.The simulation results show that the process of bubble nucleation is divided into three stages.The first stage is the waiting process,in which pressure of system is almost constant.In the second stage,numerous small bubble nucleuses appear and pressure of system increases rapidly.The third stage is the aggregation process of small bubble nucleuses,in this stage the pressure of system increases slowly to a stable value.By analyzing simulation data,the bubble nucleation rate is got, which is eight orders of magnitudes bigger than the result of classic nucleation theory.The bubble nucleation rate increases along with the increasing of density and superheated temperature,which agrees well with one of classic nucleation theory.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2010年第11期1806-1808,共3页 Journal of Engineering Thermophysics
基金 高等学校博士学科点基金资助项目(No.20090191110016)
关键词 分子动力学模拟 经典成核理论 成核率 气泡 molecular dynamic simulation classic nucleation theory nucleation rate nucleus
  • 引文网络
  • 相关文献

参考文献10

  • 1N Lummen, T Kraska. Homogeneous Nucleation of Iron from Supersaturated Vapor Investigated by Molecular Dynamics Simulation [J]. Aerosol Science, 2005, 36: 1409- 1426.
  • 2Sochi Matsumoto, Shigo Maruyuama, Hicliki Saaruwatari. A Molecular Dynamics Simulation of A Liquids Droplet on A Solid Surface [C]//ASME/JSME Thermal Engineering Conference. 1995(2): 557-562.
  • 3Shigo Maruyama, Sochi Matsumoto, Akohin Ogita. Surface Phenomena of Molecular Clusters by Molecular Dynamics Methods [J]. Thermal Science & Engineering, 1994, 2(1): 77-84.
  • 4M I Flik, C L Tien, Size Effect on the Thermal Conducitivity of High-Tc Thin-Film Superconductors, Coll Pap Heat Transfer HTG-123 ASME, New York, 1989:65 75.
  • 5A E Galashev, V N Chukanov, G I Pozharskaya. Application of Molecular Dynamic Simulation of Water Clusters with CO and CO2 Molecules to Binary Nucleation Problems [J]. Journal of Structural Chemistry, 2002, 43(3): 449-457.
  • 6Pan Yi, D Poulikakos, J Walther, et al. Molecular Dynamics Simulation of Vaporization of an Ultra-Thin Liquid Argon Layer on a Surface [J]. International Journal of Heat and Mass Transfer, 2002, 45:2087-2100.
  • 7Allen M P, Tildesley D J. Computer Simulation of Liquids [M]. Oxford: Oxford University Press, 1989:22-23.
  • 8S H Park, J G Weng, C L Tien. A Molecular Dynamics Study on Surface Tension of Microbubbles [J]. International Journal of Heat and Mass Transfer, 2001, 44: 1849 -1856.
  • 9Tomoyuki Kinjo, Mitsuhiro Matsumoto. Cavitation Processes and Negative Pressure [J]. Fluid Phase Equilibria, 1998, 144:343-350.
  • 10Marehito Sekine, Kenij Yasuoka, Tomoyuki Kinjo, et aI. Liquid Vapor Nucleation Simulation of Lennard-Jones Fluid by Molecular Dynamics Method [J]. Fluid Dynamics Research. 2008. 40:597-605.

同被引文献2

引证文献1

二级引证文献2

;
使用帮助 返回顶部