期刊文献+

结构金属材料超高周疲劳破坏行为 被引量:18

UNDERSTANDING FATIGUE FAILURE IN STRUCTURAL METALS IN ULTRA-HIGH CYCLE REGIME
原文传递
导出
摘要 受传统试验方法的限制,结构材料的疲劳研究范围常限于107周次以内.然而,过去十年出现了一系列意料之外的破坏事件,尤其是对于认为具有明显疲劳极限的钢铁结构部件.因此,对于不同材料达到1010周次的超高周疲劳行为的研究引起了广泛关注,尤其是近年来成为了热点.本文综述了结构金属材料超高周疲劳的研究现状并介绍了其基本方面.主要内容包括:加速疲劳试验方法的发展与应用、超高周疲劳引起的内部断裂的裂纹萌生机制与扩展特征、S-N曲线的形状特点、疲劳极限存在性及其预测、加载频率和环境及表面状况的影响等.在此基础上提出值得进一步研究的一些方向. Most experimental studies on fatigue of structural materials are usually limited by conventional testing to lifetimes of 107 cycles or less. However, during the last decade, several unexpected failures have been recorded even for structural components made of ferrous metals, which were assumed to have a distinct fatigue limit. Consequently, there has been a growing interest especially in the recent years in studying ultra-high cycle fatigue up to 1010 cycles in various materials. This paper reviews the state of the art and presents some fundamental aspects on ultra-high cycle fatigue in structural metals. The main contents covered by the paper included: Development of accelerated fatigue testing method and its application, crack initiation and growth mechanisms of internal fracture due to very high cycle fatigue, S-N diagram, fatigue limit and life prediction, frequency and environmental effects, and surface treatments, etc. Future research topics have also been identified.
出处 《固体力学学报》 CAS CSCD 北大核心 2010年第5期496-503,共8页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金项目(10925211 10772125)资助
关键词 超高周疲劳 加速试验方法 疲劳破坏 疲劳极限 ultra-high cycle fatigue, accelerated testing method, fatigue failure, fatigue limit
  • 相关文献

参考文献50

  • 1Wang Q Y,Berard J Y,Dubarre A,Baudry G,Rathery S,Bathias C. Gigacycle fatigue of ferrous alloys[J], Fatigue& Fracture of Engineering Materials Structures, 1999,22(8): 667-672.
  • 2Murakami Y, Nomoto T, Ueda T, Murakami Y. On the mechanism of fatigue failure in superlong life regime (N>10^7 cycles)[J]. Fatigue & Fracture of Engineering Materials & Structures, 23(11), 893-910.
  • 3Sakai T, Takeda M, Shiozawa K, et al. Experimental Evidence of Duplex S-N Characteristic's in Wide Life Region for High Strength Steels[C]. 7th International Fatigue Congress (Fatigue'99), Beijing, 1999: 573-578.
  • 4Wang Q Y, Bathias C, Kawagoishi N,et al. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength[J]. International Journal of Fatigue,2002, 24(12):1269-1274.
  • 5Bathias C, Paris C P. Gigacycle fatigue in mechanical practice[J]. Marcel Dekker Inc, New York, 2004.
  • 6Prasannavenkatesan R, Zhang J X, McDowell D L, etc. 3D modeling of subsurface fatigue crack nucleation potency of primary inclusions in heat treated and shot peened martensitic gear steels[J]. International Journal of Fatigue, 2009,31(1) :1176-1189.
  • 7Xue H Q, Tao H, F Montembault F, Wang Q Y, Bathias C. Development of a three-point bending fatigue testing methodology at 20kHz frequency[J]. International Journal of Fatigue, 2007, 29 (9-11): 2089-2093.
  • 8Wang Q Y, Kawagoishi N, Chen Q. Effect of pitting corrosion on the very high cycle life fatigue behavior [J]. Scripta Materialia, 2003, 49(7) :711-716.
  • 9Shiozawa K, Lu Liantao, etc. Very high cycle fatigue properties of bearing steel under axial loading condition[J]. International Journal of Fatigue, 2009, 31 (5):880-888.
  • 10Roth L D. Ultrasonic Fatigue Testing, Metals Handbook[M]. Ninth Edition, ASM, Metals Park, Ohio, USA, 1987, 8:240-257.

二级参考文献51

  • 1Mughrabi H, Herz K, Stark X. Cyclic deformation and fatigue behaviour of alpha-iron mono- and polycrystals. International Journal of Fracture, 1981,17(2): 193 ~ 220.
  • 2Meininger J M, Gibeling J C. Low-cycle fatigue of niobium-1 pct zirconiurn alloys. Metall. Trans., 1992, 23A: 3077~ 3084.
  • 3Stanzl S E, Tschgg E K. Fatigue crack growth and threshold behavior at ultrasonic frequencies. ASTM Special Technical Publication, 1983. 3 ~ 18.
  • 4Furaya Y, Abe T, Matsuoka S. 1010-cycle fatigue properties of 1 800 MPa-class JIS-SUP7spring steel. Fatigue Fract. Engng. Mater. Struct., 2003,26(7): 641 ~ 646.
  • 5Murakami Y, Nomoto T, Ueda T, et al. On the mechanism of fatigue failure in the superlong life regime ( N > 107 cycles), Part Ⅰ: influence of hydrogentrapped by inclusions. Fatigue Fract. Engug. Mater. Struct.,2000, 23(11): 893 ~902.
  • 6Marquis G, Socie D. Long-life torsion fatigue with normal mean stresses.Fatigue Fract. Engug. Mater. Struct., 2000, 23:293 ~ 300.
  • 7Ebara R. Long-term corrosion fatigue behaviour of structural materials. Fatigue Fract. Engng. Mater. Struct., 2002, 25:855 ~ 859.
  • 8Lukás P, Kunz L. Specific features of high-cycle and ultra-high-cycle fatigue. Fatigue Fract. Engng. Mater. Struct., 2002, 25:747 ~ 753.
  • 9Murakami Y, YokoyamaNN, NagataJ. Mechanism of fatigue failure in ultralong life regime. Fatigue Fract. Engng. Mater. Struct., 2002, 25:735~ 746.
  • 10Nishijima S, Kanazawa K. Stepwise S-N curve and fish-eye failure in gigacycle fatigue. Fatigue Fract. Engng. Mater. Struct., 1999, 22:601 ~607.

共引文献19

同被引文献180

引证文献18

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部