期刊文献+

负荷时间序列波动性的动态时变结构研究

Research on Dynamic Time-varying Structure of Volatility in Load Time Series
原文传递
导出
摘要 采用广义自回归条件异方差(GARCH)族模型分析了负荷时间序列波动性的动态时变结构,提出了模型系的概念,使用滚动数据窗技术估计了指数广义自回归条件异方差(EGARCH)和幂自回归条件异方差(PARCH)模型系;在研究动态显著性水平线(DSL)的基础上,探究了时序波动性的动态时变结构,讨论了贯穿各子样本空间的波动不对称效应。算例分析中,将所建模型应用于短期负荷预测,比较了GARCH族模型的预测能力,得到了较高的预测精度。 Generalized Auto Regressive Conditional Heteroskedasticity(GARCH) model was employed to analyze the dynamic time-varying structure of volatility in load time series.The concept of model series was proposed,and by means of smoothing windows technique,the Exponential Generalized Auto Regressive Conditional Heteroskedasticity(EGARCH) and Power Auto Regressive Conditional Heteroskedasticity(PARCH) model series were estimated.Based on the study of Dynamic Significance Line(DSL),the time-varying structure of volatility in time series was investigated,and the asymmetry effects over all the sub-sample space were indicated.In the calculation analysis,the proposed models were applied in short time load forecasting,and the forecasting ability of GARCH-type model was compared with that of the other models.It reveals that the proposed GARCH-type model holds higher forecasting accuracy.
出处 《华东电力》 北大核心 2010年第9期1291-1295,共5页 East China Electric Power
基金 国家自然科学基金资助项目(50707004)~~
  • 相关文献

参考文献15

  • 1GARCIA R, CONTRERAS J, AKKEREN M, et al. A GARCH Forecasting Model to Predict Day-Ahead Electricity Prices[J]. IEEE Transactions on Power Systems, 2005, 20 (2) : 867-874.
  • 2LO K L, WU Y K. Analysis of relationships between hourly electricity price and load in deregulated real-time power markets [ C ]. IEE Proceedings : Generation, Transmission and Distribution, July, 2004, 151 (4) : 441-452.
  • 3CHEN H. A Study of Autoregressive Conditional Heteroscedasticity Model in Load Forecasting [ C ]. Powercon 2006, Chongqing, 2006.
  • 4HOR C, WATSON S, MAJITHIA S. Daily load forecasting and maximum demand estimation using ARMA and GARCH [C]. CPAMAPS, Stockhoim,2006.
  • 5陈昊.基于不对称自回归条件异方差模型的短期负荷预测[J].电网技术,2008,32(15):84-89. 被引量:16
  • 6ENGLE R. Autoregressive conditional heteroscedasticity with estimate of the variance ofU. K. inflation[J]. Eeonometriea, 1982, 50:987-1008.
  • 7BOLLERSLEV T. Generalized autoregressive conditional heteroskedasticity [ J ]. Journal of Econometrics, 1986, 31 : 307- 327.
  • 8NELSON D B. Conditional heteroskedasticity in asset returns: a new approach [ J ]. Econometrica, 1991, 59 (2) : 347 -370.
  • 9DING Z, GRANGER C W J, ENGLE R F. A long memory property of stock market returns and a new model[ J]. Journal of Empirical Finance 1993, 1 : 83-106.
  • 10陈昊.负荷时间序列GARCH-GED模型厚尾动态结构研究.电力系统自动化,2007,31:378-381.

二级参考文献17

  • 1程瑜,张粒子.基于ARCH模型的电价联动建模研究[J].中国电机工程学报,2006,26(9):126-130. 被引量:17
  • 2陈昊.基于广义自回归条件异方差模型的负荷预测新方法[J].电力系统自动化,2007,31(15):51-54. 被引量:49
  • 3张世英 樊智.协整理论与波动模型[M].北京:清华大学出版社,2004.170-177.
  • 4Engle R F. Autoregressive conditional heteroskedasticity with estimate of the variance of U.K. inflation[J]. Econometrica, 1982,50(4): 987-1008.
  • 5Bollerslev T. Generalized autoregressive conditional heteroskedasticity [J]. Journalof Econometrics, 1986, 31(3): 307-327.
  • 6Nelson D B. Conditional heteroskedasticity in asset returns: a new approach[J]. Econometrica, 1991, 59(2): 347-370.
  • 7Glosten L, Jagannathan R, Runkle D. On the relation between the expected value and volatility of the nominal excess return on stocks[J]. Journal of Finance, 1993, 48(5):1779-1801.
  • 8Ding Z, Granger C W J, Engle R F. A long memory property of stock market returns and a new model[J]. Journal of Empirical Finance, 1993, 1(1): 83-106.
  • 9EngleR F, Lee G G J. A long-run and short-run component model of stock return volatility, Cointegration, Causality and Forecasting [M]. Oxford: Oxford University Press, 1999.
  • 10陈昊.负荷时间序列GARCH-GED模型厚尾动态结构研究.电力系统自动化,2007,31:378-381.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部