期刊文献+

差分相移量子密钥分发研究进展 被引量:1

Recent development of differential-phase-shift quantum key distribution
下载PDF
导出
摘要 量子密钥分发被认为是实现保密通信的理想方法。本文综述了差分相移量子密钥分发的研究进展。重点介绍差分相移量子密钥分发协议的原理和针对在不同攻击策略下的安全性讨论。概述量子密钥分发当前应用情况,最后对量子密钥分发技术的前景进行了展望。 Quantum-key-distribution(QKD) has been studied as an ultimate method for secure communications.Here we review the recent progress on differential-phase shift(DPS) QKD.The principle of the DPS-QKD protocol is explained,and the security against the Photon-number splitting(PNS) and the sequential attack strategy is discussed briefly.The current application in various field and the prospect of QKD is referred.
出处 《激光杂志》 CAS CSCD 北大核心 2010年第5期1-4,共4页 Laser Journal
关键词 量子密钥分发 保密通信 差分相移 光子数分离 quantum key distribution secure communication differential phase shift photon-number splitting
  • 相关文献

参考文献41

  • 1Riven R, Ahamir A, Adleman L. MIT Laboratory for Computer Science[J]. Technical Report, MIT/LCS/TR - 1979,212.
  • 2Shor P. Proc of the 35th Annual Symposium on Foundation of Computer Science[ C]. IEEE Computer Society Press, 1994,124- 134.
  • 3Grover L K. Quantum Mechanics Helps in Searching for a Needle in a Haystack[ J]. Phys. Rev. Lett., 1997,79:325 - 328.
  • 4Vemam, G. S. Cipher printing telegraph systems for secret wire and radio telegraphic communications [J]. J. Am. Inst. Elec. Eng., 1926, 45:109 - 115.
  • 5Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography[J].Rev. Mod. Phys,2002,74:145- 195.
  • 6C. Bennett and G. Brassant. Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing [ C ]. Bangalore, India IEEE, New York, 1984, 175 - 179.
  • 7C. H. Bennett. Quantum cryptography using any two nonorthogonal states [J]. Phys. Rev. Lett., 1992,68(21 ) : 3121 - 3124.
  • 8A. Einstein, B. Podolsky, and N. Rosen. Can Quantum- Mechanical Description of Physical Reality Be Considered Complete [ J ]. Phys. Rev, 1935,47:777 - 780.
  • 9A. K. Ekert. Quantum cryptography based on Bell' s theorem[J].Phys. Rev. Lett., 1991,67(6) :661 - 663.
  • 10C. H. Bennett, G. Brassard, and N. D. Mennin. Quantum cryptography without Bell' s theorem [J]. Phys. Rev. Lett., 1992, 68 ( 5 ) : 557 - 559.

同被引文献21

  • 1Wootters W K, Zurek W H. A single quantum cannot be cloned[J]. Nature, 1982,299.
  • 2Wiesner S. Conjugate coding[ J]. SIGACT News, 1983,15 ( 1 ) : 78 - 88.
  • 3Bennett C H, Brassard G. In Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing[ Z]., 1984, 175 - 179.
  • 4Bennett Charles, Bessette Francois, Brassard Gilles, et al. Experimental Quantum Cryptography[ J]., Phys, Rev. lett, 1992,3 - 28.
  • 5Shor P W, Preskill J. Simple Proof of Security of the BB84 Quantum Key Distribution Protocol[ J ]. Phys. Rev. kett, 2000,85 (2) :441 - 444.
  • 6Einstein A, Podolsky B, Rosen N. Can Quantum - Mechanical Description of Physical Reality Be Considered Complete? [J]. Phys. Rev, 1935,47 ( 10 ) : 777 - 780.
  • 7Ekert A K. Quantum cryptography based on Bell's theorem[J]. Phys. Rev. Lett., 1991,67(6) :661 - 663.
  • 8Bennett C H. Quantum cryptography using any two nonorthogonal states [J].Phys. Rev. Lett. ,1992,68(21):3121-3124.
  • 9Goldenberg L, Vaidman L. Quantum Cryptography Based on Orthogonal States[ J]. Phys. Rev. Lett., 1995,75(7) : 1239 - 1243.
  • 10Bruss D. Optimal Eavesdropping in Quantum Cryptography with Six States[ J]. Phys. Rev. Lett., 1998,81 (14) : 3018 - 3021.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部