期刊文献+

一种基于语料特性的聚类算法 被引量:8

Clustering Algorithm Based on the Distributions of Intrinsic Clusters
下载PDF
导出
摘要 为寻求模型不匹配问题的一种恰当的解决途径,提出了基于语料分布特性的CADIC(clustering algorithm based on the distributions of intrinsic clusters)聚类算法.CADIC以重标度的形式隐式地将语料特性融入算法框架,从而使算法模型具备更灵活的适应能力.在聚类过程中,CADIC选择一组具有良好区分度的方向构建CADIC坐标系,在该坐标系下统计固有簇的分布特性,以构造各个坐标轴的重标度函数,并以重标度的形式对语料分布进行隐式的归一化,从而提高聚类决策的有效性.CADIC以迭代的方式收敛到最终解,其时间复杂度与K-means保持在同一量级.在国际知名评测语料上的实验结果表明,CADIC算法的基本框架是合理的,其聚类性能与当前领先水平的聚类算法相当. In finding a flexible approach to solve the model misfit problem,a clustering algorithm based on the distributions of intrinsic clusters(CADIC) is proposed,which implicitly integrates distribution characteristics into the clustering framework by applying rescaling operations.In the clustering process,a set of discriminative directions are chosen to construct the CADIC coordinate,under which the distribution characteristics are analyzed in order to design rescaling functions.Along every axis,rescaling functions are applied to implicitly normalize the data distribution such that more reasonable clustering decisions can be made.As a result,the reliability of clustering decisions is improved.The time complexity of CADIC remains the same as K-means by using a K-means-like iteration strategy.Experiments on well-known benchmark evaluation datasets show that the framework of CADIC is reasonable,and its performance in text clustering is comparable to that of state-of-the-art algorithms.
出处 《软件学报》 EI CSCD 北大核心 2010年第11期2802-2813,共12页 Journal of Software
基金 国家自然科学基金No.60933005 国家重点基础研究发展计划(973)Nos.2007CB311100 2004CB318109 国家高技术研究发展计划(863)No.2007AA01Z441~~
关键词 CADIC(clustering algorithm based on the DISTRIBUTIONS of INTRINSIC clusters) 文本聚类 模型不匹配 重标度 信息检索 CADIC(clustering algorithm based on the distributions of intrinsic clusters); text clustering; model misfit; rescaling; information retrieval;
  • 相关文献

参考文献14

  • 1Dumais ST. LSI meets TREC: A status report. In: Harman D, ed. Proc. of the 1st Text Retrieval Conf. (TREC1). National Institute of Standards and Technology Special Publication 500-207, 1993. 137-152.
  • 2Kowalski G. Information Retrieval Systems--Theory and Implementation. Boston: Kluwer Academic Publishers, 1997.
  • 3Zamir O, Etzioni O, Madani O, Karp RM. Fast and intuitive clustering of Web documents. In: Proc. of the KDD'97. 1997. 287-290.
  • 4Allan J, ed. Topic Detection and Tracking: Event-Based Information Organization. Dordrecht: Kluwer Academic Publishers, 2002.
  • 5Wu H, Phang TH, Liu B, Li X. A refinement approach to handling model misfit in text categor-zation. In: Proc. of the SIGKDD 2002. 2002.207-216.
  • 6Tan SB, Cheng XQ, Ghanem MM, Wang B, Xu HB. A novel refinement approach for text categorization. In: Proc. of the 14th ACM CIKM 2005. Bremen: ACM Press, 2005. 469-476.
  • 7Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press, 2004.
  • 8Ng A, Jordan M, Weiss Y. On spectral clustering: Analysis and an algorithm. In: Dietterich T, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems 14. Cambridge: MIT Press, 2002.
  • 9Chan PK, Schlag DF, Zien JY. Spectral K-way ratio-cut partitioning and clustering. IEEE Trans. Computer-Aided Design, 1994, 13(9):1088-1096. [doi: 10.1109/43.310898].
  • 10Ding C, He X, Zha H, Gu M, Simon HD. A min-max cut algorithm for graph partitioning and data clustering. In: Proc. of the 1st Int'l Conf. on Data Mining (ICDM). 2001. 107-114.

同被引文献92

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部