期刊文献+

股票指数模糊随机预测与灰色预测实证比较研究 被引量:5

A Comparative Study on Stock Index Grey Prediction and Fuzzy Stochastic Prediction
下载PDF
导出
摘要 灰色预测和模糊随机预测是两种不同的对股票指数进行预测的方法。灰色预测模型出现的较早,模糊随机预测模型是近年来才被应用在对股票指数的预测当中。为了找出能够更加准确和能够得到更接近于真实值的较优预测模型,分别依据灰色预测模型和模糊随机预测模型,以2009年全年的每日60分钟沪深300指数为样本进行了实证研究。研究发现,采用模糊随机预测模型得到的预测结果中有71%比采用灰色预测模型得到的预测结果更接近于真实的股票指数。研究结果表明,在对股票指数实时预测准确度方面,模糊随机预测模型优于灰色预测模型。 Grey prediction and fuzzy stochastic prediction are two different stock index prediction methods.Grey prediction model came out earlier than fuzzy stochastic prediction model,and the latter was just used in the area of stock index prediction in recent years.In order to evaluate which is the better method to get more accurate and more reliable stock indexes forecasting results,this paper predicts a full-year 2009 HS300 stock indexes using these two prediction models respectively.According to the empirical study,71% forecasting results of the fuzzy stochastic prediction model are close to the real HS300 stock indexes.This study shows that fuzzy stochastic prediction model is more effective than grey prediction model in the aspect of forecasting accuracy.
出处 《哈尔滨工业大学学报(社会科学版)》 2010年第5期48-53,共6页 Journal of Harbin Institute of Technology(Social Sciences Edition)
基金 国家自然科学基金(70773028) 高等学校博士学科点专项科研基金(200802130048)
关键词 股指预测 模糊随机预测 灰色预测 沪深300指数 stock index prediction fuzzy stochastic prediction grey prediction HS300 stock index
  • 相关文献

参考文献14

  • 1LEE K,JO G. Expert System for Predicting Stock Market Timing Using A Candlestick Chart [ J ]. Expert Systems with Applications, 1999, 16 : 357 - 364.
  • 2BABA N, KOZAKI M. An Intelligent Forecasting System of Stock Price Using Neural Networks[ G]//Proceedings of International Joint Conference on Neural Networks, 1992:371 - 377.
  • 3FILIPPO CASTIGLIANC. Forecasting Price Increments Using an Artificial Neural Network [ J ]. Advances in Complex Systems,2001,4 ( 1 ) :45 - 56.
  • 4ALLEN F, KARALAINEN. Using Genetic Algorithms to Find Technical Trading Rules [ J ]. Journal of Financial Economics, 1999,51:245 - 271.
  • 5KORCZAK J, ROGER P. Stock Timing Using Genetic Algorithms [ J ]. Applied Stochastic Models in Business and Industry,2002,18 : 121 - 134.
  • 6胡博,卫宏儒,廖福成.小波变换在股票分析中的应用[J].系统管理学报,2007,16(4):365-369. 被引量:3
  • 7邓凯旭,宋宝瑞.小波变换在金融数据分析中的应用[J].数理统计与管理,2006,25(2):215-219. 被引量:30
  • 8HSU YEN - TSENG, LIU MING - CHUNG. Forecasting the Turning Time of Stock Market Based on Markov - Fourier Grey Model [ J ]. Expert Systems with Applications,2009,36(4) :8597 -8603.
  • 9TAHSEEN AHMED JILANI, SYED M. A Refined Fuzzy Time Series Model for Stock Market Forecasting [ J ]. Statistical Mechanics and Its Applications, 2008, 387 (12) : 2857 -2862.
  • 10CHIANG JAW - YEONG, CHEN C. Application of Grey Prediction to Inverse Nonlinear Heat Conduction Problem [ J ]. International Journal of Heat and Mass Transfer, 2008,51 ( 3 ) : 576 - 585.

二级参考文献6

  • 1殷光伟,郑丕谔.应用小波理论进行股市预测[J].系统工程理论方法应用,2004,13(6):543-547. 被引量:10
  • 2[1]Ingrid Daubechies.Ten lectures on wavelets[M].Society for Industrial and Applied Mathematics.1992.
  • 3[3]高志,余啸海.Matlab小波分析工具箱原理与应用[M].长沙:国防工业出版社,2004.
  • 4Ning Taikang,Susan M Wbiting,Power Spectrum Estimation Via Orthogonal Transformation[J].IEEE Proc,1990(2),2523-2526.
  • 5赵凯 王宗花,小波变换及其在分析化学中的应用[M].地质出版社,2000,102-104.
  • 6高紫光,路磊.非平稳时间序列的状态空间建模与预测[J].系统工程,1998,16(3):54-59. 被引量:16

共引文献31

同被引文献40

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部