期刊文献+

龙牙花不同花器官的表皮形态 被引量:4

The Epidermal Morphology of the Flower of Erythrina corallodendron
下载PDF
导出
摘要 花的光合作用与气孔密度密切相关,但关于在花生长过程中气孔密度如何改变尚未见报道。以龙牙花(Erythrina corallodendron)花为实验材料,将花的生长期分为6个阶段,采用光学显微镜对不同阶段的花萼、旗瓣、翼瓣、龙骨瓣、雌蕊托、子房、花柱、花丝和花药表皮的形态特征、表皮细胞密度、气孔密度、保卫细胞长度及宽度进行研究,并对其光合作用的能力进行测定。结果发现:除了翼瓣和花丝表皮以外,气孔均分布在花朵的其它器官表皮上,如花萼、旗瓣、龙骨瓣、雌蕊托、子房、花柱和花药。气孔复合体主要有无规则型、平列型以及辐射型,但不同花器官存在的气孔类型具有差异。在花萼、旗瓣、龙骨瓣、翼瓣以及花丝生长过程中表皮细胞密度逐步下降,表明其生长主要由表皮细胞扩大引起;大部分花器官如花萼、旗瓣、龙骨瓣、雌蕊托和子房表皮的气孔密度在其生长中后期趋于稳定,然而其保卫细胞长度和宽度的变化规律具有多样性。旗瓣不进行光合作用。 Flowers can undergo non-foliar photosynthesis,which is mainly affected by stomatal density.However,quantitative information on changes in stomatal density during flower development is still lacking.In the present study,Erythrina corallodendron flowers were classified into 6 developmental stages.The epidermal morphology,epidermal cell density,stomatal density,guard cell length and width of flowers were investigated at each stage by light microscopy.Photosynthesis of flower organs was also measured.Stomata were on the surface of sepal,vexilla,keel,anther,gynophore,ovary,and style but not wing or filaments.Flower organs showed anomocytic,paracytic,and actinocytic stomatal complexes.However,ontogenetic changes in stomatal complexes varied considerably among flower organs.Epidermal cell density on the surface of sepal,vexilla,keel,wing and filaments decreased with flower development,which suggests that the growth of sepal,vexilla,keel,wing and filaments were mainly due to cell expansion.Stomatal density of most flower organs,such as sepal,vexilla,keel,gynophore,and ovary,did not change markedly at later developmental stages.Changes in guard cell length and width varied considerably among different organs during flower development.Unlike the leaves,vexilla did not undergo photosynthesis.
出处 《植物学报》 CAS CSCD 北大核心 2010年第5期594-603,共10页 Chinese Bulletin of Botany
关键词 发育 表皮细胞密度 龙牙花 气孔 气孔密度 development epidermal cell density Erythrina corallodendron stomata stomatal density
  • 相关文献

参考文献2

二级参考文献27

  • 1袁永明 彭泽(等).-[J].植物学报,1991,33(11):840-847.
  • 2王勋陵.-[J].植物学通报,1993,10:1-10.
  • 3王昌命 张新英.-[J].植物学报,1994,36:31-38.
  • 4张新英 曹宛红 等.-[J].植物学报,1990,32:909-915.
  • 5邓亮 张新英.-[J].植物学报,1989,31:95-102.
  • 6刘家琼 邱明新.-[J].植物学报,1982,24:568-574.
  • 7贺金生 陈伟烈 等.-[J].植物生态学报,1994,18:219-227.
  • 8黄振英 吴鸿 等.-[J].植物生态学报,1997,21:521-530.
  • 9方精云.-[J].科学通报,1992,37:1979-1983.
  • 10方精云.-[J].生态学报,1992,12:97-104.

共引文献84

同被引文献56

  • 1Pollen Sliding as a New Self-pollination Mechanism[J].Bulletin of the Chinese Academy of Sciences,2004,18(4):190-190. 被引量:1
  • 2刘家熙,阎秀峰.西藏产四种卷柏科植物的孢子形态观察[J].植物学通报,2005,22(1):44-49. 被引量:8
  • 3Shagin DA et al. GFP-like proteins as ubiquitous metazoan superfamily: Evolution of functional features and structural complexity. Mol Biol Evol, 2004, 21:841-850.
  • 4Davenport D et al. Luminescence in Hydromedusae. Proc R Soc London Ser B, 1955, 144:399-411.
  • 5Shimomura O et al. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol, 1962, 59: 223- 239.
  • 6Shimomura 0 et al. Microdetermination of calcium by aequorin luminescence. Science, 1963, 140:1339-1340.
  • 7Morise H et al. Intermolecular energy transfer in the abioluminescent system of Aequorea. Biochemistry, 1974, 13: 2656-2662.
  • 8Shimomura O. Structure of the chromophore of aequorea green fluorescent protein. FEBSLett 1979, 104:220-222.
  • 9Kendall JM et al. Aequorea victoria bioluminescence moves into an exciting new era. Trends Bioteehnol, 1998, 16:216-224.
  • 10Prasher D et al. Cloning and expression of the cDNA coding for aequroin a bioluminescent calium-activated protein. Biochem Biophys Res Commun, 1985, 126:1259-1268.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部