期刊文献+

非平稳噪声环境下的语音增强算法 被引量:4

A More Effective Speech Enhancement Algorithm under Non-Stationary Noise Environment
下载PDF
导出
摘要 文章针对非平稳噪声环境和低信噪比的情况,提出了一种基于低频区和高频区带噪语音特性的非平稳噪声估计,并结合人耳听觉掩蔽效应进行语音增强的算法。该算法首先通过非平稳噪声估计为加窗后的每一帧语音构造一个时变的权值实现对噪声的实时估计,然后结合人耳听觉特性计算出每一帧语音的不同Bark域的噪声掩蔽阈值,最后利用计算出的噪声掩蔽阈值自适应设定语音增强系数。仿真结果表明,该算法在抑制背景噪声,提高信噪比,减少语音失真等方面优于传统的语音增强方法。 Aiming at non-stationary noise environment and low SNR(signal to noise ratio),we propose a more effective speech enhancement algorithm.The non-stationary noise estimation is based on noisy speech signal properties from low-frequency regions and high-frequency regions.Section 1 of the full paper explains what we believe to be a more effective algorithm;its core consists of:(1) we construct a time-varying weighting value for each frame of windowed speech signals through non-stationary noise estimation to realize the real time noise estimation;(2) utilizing the human auditory masking properties,we use Eq.(12) to calculate the masking threshold values of each frame of speech signals in its different BARK regions;(3) we then use the calculated masking threshold values to self-adaptively adjust the speech enhancement coefficients calculated by using Eq.(4).Section 2 simulates our speech enhancement algorithm to verify its effectiveness;the simulation results,given in Figs.2 and 3 and Table 1,show preliminarily that our algorithm is more effective for reducing background noise,improving SNR and decreasing speech distortion.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2010年第5期664-668,共5页 Journal of Northwestern Polytechnical University
基金 航空科学基金(20080153002)资助
关键词 信噪比 估计 非平稳噪声估计 听觉掩蔽效应 语音增强 signal to noise ratio estimation non-stationary noise estimation auditory masking property speech enhancement
  • 相关文献

参考文献8

  • 1Yamauchi J, Shimamura T. Noise Estimation Using High Frequency Regions for Spectral Subtraction. IF, ICE Trans on Fundamentals of Electronics, Communications and Computer Sciences, 2002, 85 (3) : 723 - 727.
  • 2Kohei Yamashita, Tetsuya Shimamum. Nonstationary Noise Estimation Using Low-Frequency Regions for Spectral Subtraction. IEEE Trans on Signal Processing Letters, 2005, 12(6) : 465 -468.
  • 3Nathalie Virag. Single Channel Speech Enhancement Based on Masking Properties of Human Auditory System. IEEE Trans on Speech and Audio Processing, 1999, 7(2) : 126 - 137.
  • 4Berouti M, Schwartz R, Makhoul J. Enhancement of Speech Corrupted by Acoustic Noise. Proc of IEEE ICASSP, 1979, 04: 208 - 211.
  • 5陶智,赵鹤鸣,龚呈卉,吴迪.基于谱减法的听觉模拟的语音增强[J].计算机工程与应用,2005,41(4):57-59. 被引量:5
  • 6刘海滨,吴镇扬,赵力,曾毓敏.非平稳环境下基于人耳听觉掩蔽特性的语音增强[J].信号处理,2003,19(4):303-307. 被引量:16
  • 7王晓娣.多带谱相减结合感觉加权的语音增强方法研究[J].电力系统通信,2005,26(12):50-53. 被引量:6
  • 8Painter T, Spanias A. Perceptual Coding of Digital Audio. Proceedings of the IEEE, 2000, 88(4) : 451 -512.

二级参考文献29

  • 1..http://spib.rice.edu/spib/select_noise.html.,.
  • 2M. Berouti, R. Schwartz, J. Makhoul. Enhancement of speech corrupted by acoustic noise. Proc. IF.F.F. ICASSP,Washinggton, DC, Apr. 1979; 208-211.
  • 3E Lockwood, J. Boudy. Experiments with a nonlinear spectral subtractor(NSS), hidden Markov models and projection for robust recognition in cars. Speech Communication. 1992; 11: 215-228.
  • 4Boh Lim Sim, Yit Chow Tong etc.. A parametric formulation of the generalized spectral subtraction method. IEEE.Transaction on Speech and Audio Processing. 1998; 6(4):328-337.
  • 5Nathalie Virag, Single channel speech enhancement based on masking properties of human auditory system. IEEE Transactions on Speech and Audio Processing. 1999; 7(2):126-137.
  • 6I. Cohen, B. Berdugo. Speech enhancement for nonstationary noise environments. Signal Processing. 2001; 81:2403-2418.
  • 7Y. Epharim, D. Malah. Speech enhancement using a minimum mean square log-spectral amplitude estimator.IEEE. Transactions on Acoustics. Speech, and Signal Processing. 1984; 32(6): 1109-1121.
  • 8E M. Crozier, B.M.G. Cheetham etc. Speech enhancement employing spectral subtraction and linear predictive analysis. Electronics Letters. 1993; 29 (12): 1094-1095.
  • 9R. Martin. Noise power spectral density estimation based on optimal smoothing and minimum statistics. IEEE.Transactions on Speech and Audio Processing. 2001; 9(5):504-512.
  • 10T. Painter, A. Spanias. Perceptual coding of digital audio.Proe. Of the IEEE. 2000; 88(4): 451-512.

共引文献22

同被引文献25

  • 1李晔,张仁智,崔慧娟,唐昆.低信噪比下基于谱熵的语音端点检测算法[J].清华大学学报(自然科学版),2005,45(10):1397-1400. 被引量:37
  • 2朱仁祥,吴乐南.Quantum stochastic filters for nonlinear time-domain filtering of communication signals[J].Journal of Southeast University(English Edition),2007,23(1):22-25. 被引量:2
  • 3易克初 田斌 付强.语音信号处理[M].北京:国防工业出版社,2003..
  • 4NUMER E, GOUBRAN R, MAHMOUND S. Robust voice ac- tivity detection using higher-order Statistics in the LPC residual domain [J]. IEEE Transaction on Speech and Audio Processing, 2001, 9(3): 217-231.
  • 5I COHEN I, BARUCH B. Speech enhancement for non-stationary noise environments [J]. IEEE Signal Processing, 2001, 81 (11) : 2403-2418.
  • 6Loizou P,Speech enhancement:theory and practice[M].1st ed.CRC Taylor and Francis,2007:6-7.
  • 7Israel Cohen and Baruch Berdugo:S p e e c h e n h a n c e m e n t f o r n o nstationary noise environments,[J].Signal Process.,vol.81,no.11,pp.2403-2418,Nov.2001.
  • 8Israel Cohen:Noise Estimation by Minima Controlled Recursive Averaging for Robust Speech Enhancement,[J].IEEE Signal processing letters,vol.9,no.1,January 2002.
  • 9Israel Cohen.“Noise Spectrum Estimation in Adverse Environments:Improved Minima Controlled Recursive Averaging”[J].IEEE Transactions on speech and audio processing,vol.11,no.5,Sep,2003.
  • 10Israel Cohen:Relaxed statistical model for speech enhancement and a priori SNR estimation[J].IEEE Trans.Speech Audio Process.,vol.13,no.5,pt.2,pp.870-881,Sep,2005.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部