期刊文献+

粗糙弯曲动脉壁面剪应力分布的摩擦学效应 被引量:1

Some Biotribological Effects Caused by Shear Stress Distribution on Rough Luminal Wall of Curved Artery
下载PDF
导出
摘要 文章以主动脉中复杂部位——弯曲血管作为分析对象,考虑人体心脏搏动作用和血管壁面与血液流动的相互影响,采用计算流体动力学技术,对因低密度脂蛋白等粒子沉积形成的粗糙斑块对血管中壁面剪应力分布的影响进行了研究,力图阐明特定条件下的血液流动的摩擦学效应。研究工作表明,弯曲血管中主动脉弓与降主动脉交界处内侧出现的粗糙斑块,其高度、间距以及分布情况的变化,对血管壁面剪应力的分布和数值都有很大的影响,粗糙斑块的存在及结构状态的变化造成的血管壁面剪应力的"振荡波动"影响和数值的突增,将对动脉血管病变的萌生和发展有很大影响,这一过程中表现出来的摩擦学效应应引起注意。 The influence of atherosclerotic plaques on blood flow and on wall mechanical properties in blood vessels plays a key role in atherogenesis.Section 1 of the full paper presents a model of a curved artery that contains rough plaques;this model is largely based on what is already known in the open literature but is modified by us in minor aspects;it fully considers the fluid-structure interaction and is used to investigate the change in wall shear stress under physiologically pulsatile flow condition in order to explain some biotribological effects on blood flow.The calculation results,given in Figs.2,3,4 and 5,and their analysis show preliminarily that the height,interval and distribution of the rough plaques existing in cardiovascular lumen all have great effects on the peak value and distribution of the wall shear stress in a local artery and cause the drastic oscillation of the wall shear stress.These effects may contribute to further development and new formation of plaques and finally lead to arterial stenosis.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2010年第5期730-735,共6页 Journal of Northwestern Polytechnical University
基金 西北工业大学基础研究基金(W018102)资助
关键词 粗糙斑块 剪应力 生物摩擦学 动脉病变 shear stress models rough plaque biotribological effect curved artery
  • 相关文献

参考文献8

  • 1Morris L, Delassus P, CaUanan A, et al. 3-D Numerical Simulation of Blood Flow through Models of the Human Aorta. Journal of Biomechanical Engineering, 2005, 127 : 767 - 775.
  • 2刘有军,乔爱科,黄伟,曾衍钧.血流动力学数值模拟与动脉粥样硬化研究进展[J].力学进展,2002,32(3):435-443. 被引量:17
  • 3Jung J, Lyczkowski R W, Panchal C W, et al. Mukiphase Hemodynamic Simulation of Pulsatile Flow in a Coronary Artery. J Biomechanics, 2006, 39 : 2064 - 2073.
  • 4Shipkowitz T, Rodgers V G J, Frazin L J, et al. Numerical Study on the Effect of Secondary Flow in the Human Orta on Local Shear Stress in Abdominal Aortic Branches. J Biomechanics, 2000, 33 (6) : 717 - 728.
  • 5宋江湖.光滑/粗糙弯曲动脉血液流动的流固耦合分析:[硕士学位论文].西安:西北工业大学,2008.
  • 6Malek A M, Alper S L, et al. Hemodynamic Shear Stress and Its Role in Atherosclerosis. JAMA,1999, 282:2035 -2042.
  • 7康振黄,陈君楷.心血管血液动力学.成都:四川教育出版社,1990.
  • 8乔爱科,刘有军,伍时桂.弯曲动脉的血流动力学数值分析[J].计算力学学报,2003,20(2):155-163. 被引量:32

二级参考文献15

  • 1伍时桂 李兆治 等.非线性波在动脉内传播的数值研究[J].北京工业大学学报,1988,14(2):44-52.
  • 2Yearwood T L, Chandran K B. Physiologicalpulsatile flow experiments in a model of the human aorta arch[J]. J Biomech, 1982,15:683-704.
  • 3Costas C H, Stanley A B. Fully developed pulsatile flow in a curved pipe[J]. J Fluid Mech, 1988,195(1):23-25.
  • 4Myers J G, Moore J A, Ojha M, et al. Factors influencing blood flow patterns in the human right coronary artery[J]. Annals of Biomedical Engineering. 2001,29:109-120.
  • 5Agrawal Y, Talbet L,Gong K. Laser anemometer study of flow development in curved circular pipes[J]. J Fluid Mechanics, 1978,85:497-518.
  • 6Soh W Y, Berger S A. Laminar entrance flow in a curved pipe[J]. J Fluid Mechanics, 1984,148(11):109-135.
  • 7伍时桂,乔爱科,等.非线性脉搏波传播的理论研究[A].全国第七届计算传热学会议论文集[C].1997,333-338.(Wu Shigui, Qiao Aike, et al. Theoretical research of nonlinear pulse wave propagation[A]. The 7th national conference of computational heat transfer[C]. 1997.333-338.(in Chinese))
  • 8Chang L J, Tarbell J M. Numerical simulation of fully developed sinusoidal and pulsatile (physiolog-ical) flow in curved tubes[J]. J Fluid Mech,1985,161(8):175-198.
  • 9Jiang C B, Kawahara M. The analysis of unsteady incompressible flows by a three-step finite element method[J]. Int J Numer Methods Fluids, 1993,16:793-811.
  • 10Naruse T, Tanishita K. Large curvature effect on pulsatile entrance flow in a curved tube: model experiment simulating blood flow in an aortic arch[J]. Transactions of the ASME, J Biomech Eng, 1996,118:180-186.

共引文献43

同被引文献33

  • 1ConradMF, ErgulEA, PatelVI, et al. Management of diseases of the descending thoracic aorta in the endovascular era: a Medicare population study[J]. Ann Surg, 2010, 252(4): 603-610.
  • 2OlssonC, ThelinS, St?hleE, et al. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002[J]. Circulation, 2006, 114(24): 2611-2618.
  • 3BayriY, TanrlkuluB, EkiMS, et al. Accessory lower limb associated with spina bifida: case report[J]. Childs Nerv Syst, 2014, 30(12): 2123-2126.
  • 4SpiegelM, RedelT, ZhangYJ, et al. Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation[J]. Comput Methods Biomech Biomed Engin, 2011, 14(1): 9-22.
  • 5ShahcheraghiN, DwyerHA, CheerAY, et al. Unsteady and three-dimensional simulation of blood flow in the human aortic arch[J]. J Biomech Eng, 2002, 124(4): 378-387.
  • 6JinS, OshinskiJ, GiddensDP. Effects of wall motion and compliance on flow patterns in the ascending aorta[J]. J Biomech Eng, 2003, 125(3): 347-354.
  • 7GaoF, GuoZ, SakamotoM, et al. Fluid-structure interaction within a layered aortic arch model[J]. J Biol Phys, 2006, 32(5): 435-454.
  • 8GaoF, WatanabeM, MatsuzawaT. Stress analysis in a layered aortic arch model under pulsatile blood flow[J]. Biomed Eng Online, 2006, 5: 25.
  • 9SvenssonJ, G?rdhagenR, HeibergE, et al. Feasibility of patient specific aortic blood flow CFD simulation[J]. Med Image Comput Comput Assist Interv, 2006, 9(Pt 1): 257-263.
  • 10KhanaferK, BerguerR. Fluid-structure interaction analysis of turbulent pulsatile flow within a layered aortic wall as related to aortic dissection[J]. J Biomech, 2009, 42(16): 2642-2648.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部