期刊文献+

一种基于高聚集链路测量的网络级别OD流异常检测框架

A Framework of Network-Level OD Flow Anomaly Detection Based on High Aggregate Link Measurement
下载PDF
导出
摘要 绝大多数网络异常事件会对网络中的一定空间范围造成影响,形成分布式流量异常,其异常流量模式通常体现在网络级别源到端(OD)流的某些特征参数上。OD流很难直接测量得到,需通过高聚集链路测量反演技术推测,然而反演误差将直接影响下一步基于特征参数的异常诊断。本文提出了一种直接由链路测量进行OD流异常检测的框架,该框架采用RMLP神经网络,并加入部分OD流估计值作为约束输入,实现了由链路测量对OD流级别特征参数的估计。该方法的优点是检测过程不再完全依赖链路到OD流的估计,解决了反演误差影响检测的问题,并且该框架允许链路流量到多种OD流特征参数的估计。 This paper presents a framework of network-level OD flow anomaly detection,that uses RMLP neural network,and adds some OD flow estimation as a constraint input,which estimated the OD flow parameters by the link-level measurement.
作者 杨松 李宗林
出处 《电信科学》 北大核心 2010年第10期121-126,共6页 Telecommunications Science
关键词 OD流 高聚集链路测量 异常检测 OD flow high aggregation link measurement anomaly detection
  • 相关文献

参考文献17

  • 1Matthew R, Tim G, Morley Z M,et ol. IP forwarding anomalies and improving their detection using multiple data sources, Greenberg Brian Freeman. In: SIGCOMM'04,Portland,Oregon, USA, Aug 2004.
  • 2Anja F, Albert G, Carsten L, et al. Deriving traffic demands for operational IP networks: methodology and experience. IEEE/ ACM Transactions on Networking,2001,9(3):265-280.
  • 3Medinaa A, Tafta N, Salamatianc K, etal. traffic matrix estimation existing techniques. In: SIGCOMM'02,Pittsburgh, Pennsylvmaia, USA, August 2002.
  • 4Yin Z, Matthew R, Nick D, et aL Fast accurate computation of large scale IP traffic matrices from link loads. In: SIGMETRICES'03, San Diego, California, USA, June 2003.
  • 5Simon H. Kalman filtering and neural networks. Wiley,2001.
  • 6Barford P, Kline J, Plonka D, etal. A signal analysis of network traffic anomalies. In:Proceedings of ACM SIGCOMM Intemet Measurement Workshop,Marseilles,France,November 2002.
  • 7Soule A, Salamatian K, Taft N. Combining filtering and statistical methods for anomaly detection. In: SIGCOMM'05, Berkeley, CA, USA, November 2005.
  • 8Antoine S, Nicolas L, Philippe O, et al. Non-gaussian and long memory statistical characterizations for internet traffic with anomalies. IEEE Trans Dependable and Secure Computing, 2007,4(1) : 56-70.
  • 9Lakhina A, Crovella M, Diot C. Characterization of network- wide anomalies in traffic flows. In: IMC 2004,Taormina,Sicily, Italy, October 2004.
  • 10Benjamin I, Rubinstein P, Nelson B, etal. Stealthy poisoning attacks on PCA-based anomaly detectors. In:SIGMETRICES'09, Seattle, USA, June 2009.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部