期刊文献+

一种极小化交叠的空间索引结构——MOSI-树

A Spatial Index Structure of Minimizing Overlap: MOSI-Tree
下载PDF
导出
摘要 以缩小同层节点间交叠为目标,提出了一种空间数据索引结构——MOSI-树.通过定义数据间的序关系对数据空间分割,尽可能使空间位置相邻的数据分配在同一节点中,从而使MOSI-树的同层节点间的交叠有效减少.给出了MOSI-树的建立算法及算法的正确性、可终止性证明及时间复杂度,并给出了节点插入算法.实验结果表明,MOSI-树上同层节点间交叠明显减少. An index structure: MOSI-tree for spatial data,is proposed for the purpose of reducing the overlap among the nodes on the same level of the tree. The data,whose spatial positions are adjacent,are allocated into the same node as far as possible by partitioning the data space in orders between the data defined in this paper to make the overlap among the nodes on the same level of the tree reduce effectively. An algorithm for constructing the MOSI-tree is proposed,and the algorithm is proved to be correct. And the termination and the time complexity of the algorithm are also presented. Finally,the algorithm for node insertion is obtained. Experiment shows that the overlap among the nodes on the same level of MOSI-tree is reduced evidently.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2010年第10期1423-1427,1432,共6页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(10571037) 黑龙江省自然科学基金资助项目(F200601) 黑龙江省教育厅资助项目(11511027)
关键词 空间索引 MOSI-树 极小化交叠 区域查询 spatial index MOSI-tree minimizing overlap range query
  • 相关文献

参考文献8

  • 1kNTONIN Guttmann. R-trees: a dynamic index structure for spatial searching[ CI//jProc of the ACM SIGMOD International Conference on Management of Data. New York: ACM Publisher, 1984: 45-57.
  • 2BECHMANN N, KRIEGEL H P, SCHNEIDER R, et al. The R^* -tree: an efficient and robust access method for points and rectangles[ C ] //Proc of the ACM SIGMOD international conference on management of data. New York: ACM Publisher, 1990: 322-331.
  • 3张明波,陆锋,申排伟,程昌秀.R树家族的演变和发展[J].计算机学报,2005,28(3):289-300. 被引量:95
  • 4HUNG P W, LIN H Y. Optimizing storage utilization in R-tree dynamic index structure for spatial databases[ J]. Journal of Systems and Software, 2001, 55(3): 291-299.
  • 5LEE T, LEE Sukho. OMT: overlap minimizing top-down bulk loading algorithm for R-tree[ J]. Advanced Information Systems Engineering, 2003, 7: 69-72.
  • 6张军旗,周向东,王梅,施伯乐.基于聚类分解的高维度量空间索引B^+-Tree[J].软件学报,2008,19(6):1401-1412. 被引量:23
  • 7刘兵,严和平,段江娇,汪卫,施伯乐.度量空间一种自底向上索引树构造算法[J].计算机研究与发展,2006,43(9):1651-1657. 被引量:3
  • 8周学海,李曦,龚育昌,赵振西,徐海燕.多维向量动态索引结构研究[J].软件学报,2002,13(4):768-773. 被引量:10

二级参考文献116

  • 1周项敏,王国仁.基于关键维的高维空间划分策略[J].软件学报,2004,15(9):1361-1374. 被引量:16
  • 2龚育昌,王卫红.e—B^+树:面向多用户数据库系统优化的索引技术[J].软件学报,1996,7(5):314-320. 被引量:5
  • 3Papadopoulos A.N., Manolopoulos Y.. Performance of nearest neighbor queries in R-trees. In: Proceedings of ICDT, Delphi, Greece, 1997, 394~408.
  • 4An N., Yang Zhen-Yu, Sivasubramaniam A.. Selectivity estimation for spatial joins. In: Proceedings of ICDE, Heidelberg, Germany, 2001, 368~375.
  • 5Sun Chengyu, Agrawal D., Abbadi A.E.. Selectivity estimation for spatial joins with geometric selections. In: Proceedings of EDBT, Prague, Czech Republic, 2002, 609~626.
  • 6Kamel I., Faloutsos C.. Parallel R-trees. In: Proceedings of SIGMOD, San Diego, California, 1992, 195~204.
  • 7Papadopoulos A., Manolopoulos Y.. Similarity query processing using disk arrays. In: Proceedings of SIGMOD, Seattle, Washington, USA, 1998, 225~236.
  • 8Koudas N., Faloutsos C., Kamel I.. Declustering spatial databases on a multi-computer architecture. In: Proceedings of EDBT, Avignon, France, 1996, 592~614.
  • 9Brinkhoff T., Kriegel Hans-Peter, Seeger B.. Parallel processing of spatial joins using R-trees. In: Proceedings of ICDE, New Orleans, Louisiana, 1996, 258~265.
  • 10Papadopoulos A., Manolopoulos Y.. Parallel processing of nearest neighbor queries in declustered spatial data. In: Proceedings of ACM-GIS, Rockville, MD, 1996, 35~43.

共引文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部