期刊文献+

基于移动性感知的无线传感器网络GTS自适应分配策略 被引量:3

Adaptive guaranteed time slots allocation policy in wireless sensor networks with mobility awareness
下载PDF
导出
摘要 为解决移动无线传感器网络中节点连通性较弱的问题,提出一种包含不同移动性节点的无线传感器网络提升移动节点连通性的保障时隙(GTS,guaranteed time slot)分配策略。首先,采用Kalman滤波预测模型得到用户下一阶段位置;接下来,引入一种考虑速度、方向和相对移动性的节点移动程度界定方法,并在此基础上进行GTS预约优先级的初步确定;随后,根据移动节点对所预约时隙的使用反馈情况自适应调整预约优先级;最后,根据节点的优先级决定GTS时隙的使用顺序及额外预留时隙的使用权。仿真结果显示,提出的分配策略在具有不同移动性节点的网络中,能够提高移动节点接入的成功率,保证较低的分组平均传输时延及较高的分组投递率。此外,采用基于反馈机制的自适应预约优先级调整策略能够显著增加整个网络中已分配时隙的正确使用率。 To improve the connectivity in mobile wireless sensor networks,an adaptive GTS(guaranteed time slot) allocation algorithm with nodal mobility awareness was proposed.At first,the nodal location in next state was given by Kalman filters forecasting model.Then,a method that considered velocity,direction and relative mobility was used to define mobility level,based on which the nodal priorities for GTS reservation could be determined initially.Subsequently,the priorities could be adjusted adaptively according to the usage status feedback from allocated slots.Finally,the priorities could be used to determine the order for using GTS and the right of use an extra reservation slot.Simulation results show that the proposed scheme could increase the success rate of random access and ensure a lower average packets transmission delay and higher delivery ratio.Furthermore,with the adaptive adjustment scheme for reservation priorities base on usage feedback,the rate of correct utilization of allocated slots is increased significantly in the overall networks.
出处 《通信学报》 EI CSCD 北大核心 2010年第10期212-220,共9页 Journal on Communications
基金 国家自然科学基金重点资助项目(60832005) 国家自然科学基金资助项目(60962001 61071088) NSFC-广东联合基金重点资助项目(U0835004) 高等学校学科创新引智计划基金资助项目(B08038) 中央高校基本科研业务费专项基金资助项目(JY10000901023)~~
关键词 无线传感器网络 卡尔曼滤波 服务质量 移动性 保障时隙 wireless sensor networks Kalman filters quality of service mobility GTS
  • 相关文献

参考文献27

  • 1陈晨,谢伟光,裴庆祺,曾兴雯,范科峰.无线传感器网络移动性支持问题的研究[J].计算机科学,2009,36(10):27-31. 被引量:1
  • 2陈晨,高新波.一种无线传感器网络移动性支持自适应MAC协议[J].西安电子科技大学学报,2010,37(2):279-284. 被引量:6
  • 3WANG Z M, BASAGNI S, et al. Exploiting sink mobility for maximizing sensor networks lifetime[A]. Proceedings of the 38th Annual Hawaii International Conference on System Sciences, HICSS'05[C]. Hawaii, 2005. 193-202.
  • 4KIM S S, et al. Mobility support for users in wireless sensor networks[A]. The 8th International Symposium on Autonomous Decentralized Systems[C]. Sedona, Arizona, 2007.123-128.
  • 5TACCONI D, CARRERAS I, et al. Supporting the sink mobility: a case study for wireless sensor networks[A]. 2007 IEEE International Conference on Communications[C]. Glasgow, Scotland, 2007.3948- 3953.
  • 6SEAH W K G, LIU K Z, et al. TARANTULAS: mobility-enhanced wireless sensor-actuator networks[A]. Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC'06)[C]. 2006. 548-551.
  • 7RAHIMI M, SHAH H, et al. Studying the feasibility of energy harvesting in a mobile sensor network[A]. IEEE International Conference on Robotics and Automation[C]. 2003.19-24.
  • 8AKKAYA K, SENEL F, et al. Distributed recovery from network partitioning in movable sensor/actor networks via controlled mobility[J]. IEEE Transactions on Computers, 2010, 59(2): 258-271.
  • 9CI S, SHARIF H, YOUNG A. Frame size adaptation for indoor wireless networks[J]. Electronics Letters, 2001, 37(18): 1135-1136.
  • 10ALI M, SULEMAN T, UZMI Z A. MMAC: a mobility-adaptive, collision-free mac protocol for wireless sensor networks[A]. IEEE IPCCC'05[C]. Phoenix, Arizona, USA, 2005.401-407.

二级参考文献52

共引文献32

同被引文献33

  • 1IEEE Std. 802. 15.4. IEEE standard for wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LRWPANs) [ S]. IEEE-SA Stand-ards Board, 2006.
  • 2HE JIANHUA, TANG ZUOYIN, CHEN H H, et al. An accurate and scalable analytical model for IEEE 802.15.4 slotted CSMA/CA networks [ J]. IEEE Transactions on Wireless Communications, 2009, 8(1) :440 -448.
  • 3PARK T R, KIM T H, CHOI J Y, et al. Throughput and energy consumption analysis of IEEE802. 15. 4 slotted CSMA/CA [ J]. IEEE Electronics Letters, 2005,41(18) : 1017 - 1019.
  • 4盂繁亮.基于时间敏感应用下IEEE802.15.4网络的研究和改进[D].天津:南开大学,2010.
  • 5LEBOUDEC J Y, THIRAN P. Network calculus: a theory of deter- ministic queuing systems for the intemet[ M]. Berlin: Spfinger-Ver- lag, 2001.
  • 6KOUBAA A, ALVES M, TOVAR E. GTS allocation analysis in IEEE 802.15.4 for real-time wireless sensor networks[ C]// Pro- ceedings of the 14th International Workshop on Parallel and Dis- tributed Real-Time Systems. Washington, DC: IEEE Computer So- ciety, 2006: 176.
  • 7JURICK P, KOUBAA A, ALVES M, et al. A simulation model for the IEEE 802. 15.4 protocol delay/throughput evaluation of the GTS mechanism[ C]// Proceeding in the 15th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems. Washington, DC: IEEE Comput- er Society, 2007:109 - 116.
  • 8JURICK P, KOUBAA A. IEEE 802.15.4/ZigBee OPNET Simula- tion Model [ DB/OL]. [ 2012- 05- 31 ]. http://www, open-zb. net/.
  • 9IEEE Std.802.15.4.IEEE standard for wireless me-dium access control(MAC)and physical layer(PHY)specifications for low-rate wireless personalarea networks(LRWPANs)[S].Piscataway:IEEE-SA Standards Board,2006.
  • 10Koubaa A,Alves M,Tovar E.GTS allocation analy-sis in IEEE 802.15.4for real-time wireless sensornetworks[C]∥Proceedings of the 14th InternationalWorkshop on Parallel and Distributed Real-Time Sys-tems.Rhodes Island:IEEE IPDPS,2006:8-15.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部