摘要
以Henon系统为研究对象,在作出系统全局分岔图和Lyapunov指数图,可以直观的看到系统是通过倍周期分岔进入混沌的。当系统在处于混沌状态时,使用OGY法对系统施加控制,并成功将系统控制到一个不稳定不动点上,很好的实现了混沌控制目的。研究中发现OGY法对响应矢量比较敏感,通过给定不同响应矢量和目标点可将系统控制到不同的多周期轨道上,可以确定目标点的选取以及响应矢量的大小对OGY法混沌控制效果起决定性作用。
In this paper we study the system of Henon by drawing its global bifurcation diagram and Lyapunov exponents diagram. We can find that the system enters the chaos by period-doubling bifurcation. When the system is chaotic, we achieve control of chaos by the method of OGY and control it on a unstable fixed point successfully. Meanwhile we found that the method of OGY is sensitive to the target point and response vector. The system can be controlled to different periodic orbits by varying the target point and the response vector. In this progress, we can conclude that the result of the control is sensitive to the target point and the response vector.
出处
《机械》
2010年第10期26-28,共3页
Machinery