期刊文献+

一种多尺度特征点探测算子 被引量:3

A Multi-Scale Feature Point Detector
下载PDF
导出
摘要 讨论了传统的图像特征提取算子Frstner算子;提出了一种结合Frstner和多尺度空间的尺度不变特征提取算子,利用图像熵来代替高斯尺度空间的尺度,并进一步通过最大极值熵的方法求图像的局部尺度。实验证明改进后的算子在保持Frstner算子本身优点的同时,又具有尺度不变性。 Forstner operator-a traditional image feature extraction operator was discussed, and an improved method of Forstner operator based on the theory of scale space was establised. The method uses image entropy to replace the scale parameter of Gaussican scale space, and further to calculates the local scale of image by the maximum extremum entropy. This mehtod not only maintain the advantages of Forstner operator but also have the property of scale-invariant.
出处 《测绘科学技术学报》 北大核心 2010年第5期357-360,共4页 Journal of Geomatics Science and Technology
关键词 Frstner算子 多尺度 图像熵 高斯尺度空间 特征提取 Forstner operator multi-scale image entropy scale-space of Gaussian feature extract
  • 相关文献

参考文献8

  • 1MORAVEC H P. Toward Automatic Visual Obstacle Avoidance[C] // Proceeding 5th Joint Conf Artificial Intelligence. Cambridge, USA, 1977:584.
  • 2FoRSTNER W, GuLCH E. A Fast Operator for Detection and Precise Location of Distinct Points, Corners and Centres of Circular Features [C] // Intercommision Conference on Fast Processing of Photogram metric Data interlaken. Switzerland, 1987:281-305.
  • 3SCHMID C, MOHR R, BAUCKHAGE C. Evaluation of Interest Point Detectors[J]. Journal of Computer Vision, 2000,37(2) : 151-172.
  • 4RODEHORST V, KOSCHAN A. Comparison and Evaluation of Feature Point Detectors[C] // Grundig and Altan (Eds), Proceeding of 5th Turkish-German Joint Geodetic Days. Berlin,2006:8.
  • 5陈白帆,蔡自兴.基于尺度空间理论的Harris角点检测[J].中南大学学报(自然科学版),2005,36(5):751-754. 被引量:79
  • 6LINDEBERG TONY. Scale-Space Theory: A Basic Tool for Analyzing Structures at Different Scales[J]. Journal of Applied Statistics, 1994,21(2):223-270.
  • 7KOENDERINK J, VAN DOOM A J. Representation of Local Geometry in the Visual System[J]. Biological Cybernetics, 1987,55(6) : 367-375.
  • 8吕言.用于提取数字图像点特征之有利算子研究[J].测绘学报,1989,18(3):175-182. 被引量:11

二级参考文献11

  • 1Mokhtarian F, Suomela R. Robust image corner detection through curvature scale space[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12): 1376-1381.
  • 2Pikaz A, Dinstein I. Using simple decomposition for smoothing and feature point detection of noisy digital curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(8): 808-813.
  • 3Harris C, Stephens M. A combined corner and edge detector[A]. Matthews M M. Proceedings of the Fourth Alvey Vision Conference[C]. Manchester: the University of Sheffield Printing Unit, 1988. 147-151.
  • 4Deriche R, Giraudon G. A computational approach for corner and vertex detection[J]. International Journal of Computer Vision, 1993, 10(2): 101-124.
  • 5Baker S, Nayar S K, Murase H. Parametric feature detection[J]. International Journal of Computer Vision, 1998, 27(1): 27-50.
  • 6Parida L, Geiger D, Hummel R. Junctions: Detection, classification, and reconstruction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(7): 687-698.
  • 7Schimid C, Mohr R, Bauckhage C. Evaluation of interest point detectors[J]. International Journal of Computer Vision, 2000, 37(2): 151-172.
  • 8Lindeberg T. Scale-space theory: A basic tool for analysing structures at different scales[J]. Journal Applied Statistics, 1994, 21(2): 223-261.
  • 9Babaud J, Witkin A P, Baudin M, et al. Uniqueness of the Gaussian kernel for scale-space filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(1): 26-33
  • 10Schmid C, Mohrand R, Bauckhage C. Comparing and evaluating interest points[A]. Ahuja N, de Sai U. Proceedings of the Sixth International Conference on Computer Vision[C]. Washington: IEEE Computer Society, 1998. 230-235.

共引文献88

同被引文献38

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部