期刊文献+

工程菌发酵产酶及其在1,3-丙二醇耦合酶催化制备中的应用 被引量:1

Enzyme from engineering strain and application in 1,3-propanediol coupling-enzymatic catalysis
下载PDF
导出
摘要 培养定向进化后的质粒保藏菌E.coli BL21(DE3)pLysS/PET-15b-dhaT’-24并进行质粒抽提,将抽提的质粒转化入感受态宿主细胞E.coli BL21(DE3)pLysS中得产1,3-丙二醇氧化还原酶的工程菌。工程菌经乳糖诱导后进行发酵培养获得酶活为182 U/mL的1,3-丙二醇氧化还原酶,最适反应pH值为10,pH值稳定范围为7.0~9.0,最适反应温度为55℃,温度稳定范围为30~45℃。利用工程菌产的1,3-丙二醇氧化还原酶进行转化3-羟基丙醛为1,3-丙二醇的反应,同时偶联甘油脱氢酶(由另一工程菌制备)转化甘油的反应进行辅酶NADH的再生,实现了1,3-丙二醇的双酶耦合的连续反应。由于来源于工程菌的双酶酶学性质相适应,反应连续进行34 h后,底物3-羟基丙醛的转化率达63.4%,产物1,3-丙二醇的产率达64.6%。 Engineering strain was acquired by transforming directly evolved plasmid from the incubated conservation bacterium E.coli BL21(DE3)pLysS/PET-15b-dhaT’-24 to the host cell E.coli BL21(DE3)pLysS.The lactose induced engineering strain was fermented to acquire 1,3-propanediol oxidoreductase(PDOR)with 182 U/mL activity.The optimal reaction pH was 10 and the pH stabile range was 7.0—9.0.The optimal reaction temperature was 55 ℃ and stabile temperature range was 30 — 45 ℃.3-Hydroxypropionaldehyde(3-HPA) was catalysed by the PDOR to produce 1,3-propanediol(1,3-PD).The reaction was coupled with another reaction of glycerol dehydrogenase(GDH,acquired from another engineering strain)to realize NADH regeneration.Thus,1,3-PD coupling enzymatic catalysis was constructed.Due to the two enzymes from engineering strains showed suitable characteristics,the reaction was continued for 34 hours and 63.4% translation rate of 3-HPA,64.6% 1,3-PD production rate were acquired.
出处 《化工进展》 EI CAS CSCD 北大核心 2010年第11期2143-2148,共6页 Chemical Industry and Engineering Progress
基金 国家863计划子课题(2006AA020103) 国家自然科学基金资助项目(20676048)
关键词 1 3-丙二醇氧化还原酶 工程菌 辅酶再生 1 3-丙二醇 1 3-propanediol oxidoreductase engineering strain cofactor regeneration 1 3-propanediol
  • 相关文献

参考文献6

二级参考文献43

共引文献47

同被引文献45

  • 1Blake WJ, Isaacs FJ. Synthetic biology evolves. Trends Biotechnol, 2004, 22:321-324.
  • 2Pedraza JM, Oudenaarden AV. Noise propagation in gene networks. Science, 2005, 307:1965-1969.
  • 3Mark AB, Emily CP, Uwe T, Brigitte HT. Social and ethical checkpoints for bottom-up synthetic biology, or protocells. Syst Synth Biol, 2009, 3:65-75.
  • 4Gibson DG, Glass JI, Lartigue C, Noskov V, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA, Venter JC. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329: 52-56.
  • 5Pennisi E. Synthetic genome brings new life to bacterium. Science, 2010, 328:958-959.
  • 6Royal Society of Chemistry, Science and Technology Department. A third industrial revolution. Integr Biol, 2009, 1: 148-149.
  • 7Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Eescherichia coli for production of terpenoids. Nat Biotechnol, 2003, 21: 796-802.
  • 8Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440: 940-943.
  • 9Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol, 2010, 8:423-35.
  • 10Cheng Q, Xiang LK, Izumikawa M, Meluzzi D, Moore SB. Enzymatic total synthesis of enterocin polyketides. Nature Chem Biol, 2007, 3:557-558.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部