期刊文献+

具有固定权集合的赋权圈的无号拉普拉斯谱半径

On the Laplacian Spectral radius of Cycles with Fixed Weight Set
下载PDF
导出
摘要 赋权图的谱经常用来解决网络和电路设计中的问题.本文主要研究有固定点数和正的权集合的赋权圈的无号拉普拉斯谱半径,并找出其中无号拉普拉斯谱半径最大的圈. The spectrum of weighted graphsare often used to solve the problems in the design of networks and electronic circuits.In the paper we determine the weighted cycles with the signless Laplacian matrix in the set of all weighted cycles with order n and positive weight set.
出处 《安阳师范学院学报》 2010年第5期29-32,共4页 Journal of Anyang Normal University
关键词 赋权圈 无号拉普拉斯谱半径 PERRON向量 Weighted cycles Signless Laplacian spectral radius Perron vector
  • 相关文献

参考文献7

  • 1R. Horn, C. R. johnson. Matrix Analysis[M]. Cambridge U. P. , Cambridge. 1985.
  • 2S. Poljak. Minimum spectral radius of a weighted graph[J]. Linear Algebra Appl. , 1992,171 : 53-- 63.
  • 3H. Z. Yang, G. Z. Hu, Y. Hong. Bounds of spectral radii of weighted tree[J]. Tsinghua Science and Technoloy, 2003,(5) : 517--520.
  • 4K. C. Das., R. B. Bapat, A sharp upper bound on the largest Laplaeian eigenvalue of weighted graphs [J]. Linear Algebra Appl, 2005, (409) : 379--385.
  • 5O. Rojo. A nontrivial upper bound on the largest Laplacian eigenvalue of weighted graphs[J]. Linear Algebra Appl. , 2007, (420) : 625-- 633.
  • 6O. Rojo, M. Robbiano. On the spectra of some weighted rooted trees and applieations[J]. Linear Algebra Appl. , 2007,(420) : 310--328.
  • 7S. W. Tan, J. J. Jiang. On the Laplacian spectral radius of weighted trees with fixed diameter and weight set[J]. Linear and Multilinear Algebra, 2009:1-- 20.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部