摘要
提出了一种基于支持向量区间回归(SVIR)的概率预报方法,克服了点预报法无法确定预报结果波动范围的缺点。该方法利用支持向量回归确定SVIR模型的初始参数,再利用两个径向基网络分别辨识SVIR的上限和下限,可以同时给出置信区间和点预报。最后,以某热力站实际供热负荷数据与BP神经网络点预报方法进行比较,验证了该方法的有效性和实用性。
A probabilistic prediction approach was proposed based on the support vector interval regression(SVIR) .The initial parameters of the SVIR model are determined by the support vector regression,and its upper and lower bounds are identified by two radial basis function networks.The confidence intervals and the point prediction outputs can be obtained at the same time by the proposed approach.The validity and practicability of the proposed approach were proved by comparative simulations by the proposed model and the BP network model using the heat load data collected from a practical heat supply station.
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2010年第6期1693-1697,共5页
Journal of Jilin University:Engineering and Technology Edition
基金
'十一五'国家科技支撑计划重大项目(2006BAJ03A04)
哈尔滨市科技创新人才研究专项基金项目(2006RFXXG010)
关键词
供热节能
负荷预报
支持向量回归
支持向量区间回归
置信区间
heat supply energy-saving
load prediction
support vector regression
support vector interval regression
confidence interval