期刊文献+

Banach空间含非绝对积分的一阶脉冲积分-微分方程解

First Order Impulsive Integro-differential Equation in Banach Space and Non-absolute Integral
下载PDF
导出
摘要 在非绝对Henstock积分意义下,用Darbo不动点定理及Hausdorff非紧型测度建立了一阶脉冲积分-微分方程解的存在性定理. Using Darbo fixed point theorem,and non-absolute Henstock integral,existence theorem of solution is established for first order impulsive integro-differential equation in Banach space.
作者 肖艳萍
出处 《甘肃联合大学学报(自然科学版)》 2010年第5期8-11,共4页 Journal of Gansu Lianhe University :Natural Sciences
基金 西北民族大学中青年项目基金X2009-003
关键词 HENSTOCK积分 Darbo不动点定理 Hausdorff非紧型测度 Henstock integral Darbo fixed point theorem Hausdorff noncompactness measure
  • 相关文献

参考文献5

  • 1张洪谦,夏润海.Banach空间中一阶脉冲积分-微分方程初值问题的解[J].周口师范学院学报,2005,22(5):19-23. 被引量:1
  • 2LIU Li-shan, GUO Fei, WU Cong-xin, et al. Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces[J]. Math Anal Appl, 2005 (309) :638-649.
  • 3BIANCA-RENATA SATCO. Nonlinear volterra integral equations in Henstoek integrability setting[J]. Journal of Oifferential Equations, 2008 (39) : 1-9.
  • 4SIKORSKA N A. Retarded functional differential equations in Banach spaces and Henstock-Kurzweil integrals[J]. Demonstratio Math, 2002,35 (1) : 49-60.
  • 5GUO V. Lakshmikantham, Nonlinear Problems in Abstract Cones[M]. New York: Academic Press, 1988.

二级参考文献4

  • 1Dajun guo, Lakshmikantham V , Xinzhi Liu. Nonlinear Integral Equations in Abstract Spaces [ M ]. Kluver Academic Publi shers, Sordrecht, 1996.
  • 2Lu Huiqin. Extremal solutions of nonlinear first order impulsive integro-differential equations in Banach spaces[J]. Indian J.Pure. Appl. Math. ,1999,30:1181 - 1197.
  • 3Qi Shishuo. The solution of the linear impulsive Volterra integral equation in Banach space[ J]. J. Shandong University ,1999,34:381 - 386.
  • 4Liu Lishan. Iterative method for solutions and coupled quasi-solutions of nonlinear integro-differential equations of mixed type in Banach spaces[J]. Nonlinear Anal,2000, 42(4) :583 -598.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部