期刊文献+

卡尔曼粒子滤波的视频车辆跟踪算法研究 被引量:19

Research on video vehicle tracking algorithm based on Kalman and particle filter
原文传递
导出
摘要 近年来,视频车辆跟踪作为城市智能交通系统(ITS)的一个关键技术受到关注。针对传统粒子滤波的非线性、非高斯性可能导致跟踪过程的不准确性,提出一种基于卡尔曼(Kalman)粒子滤波的视频车辆跟踪算法,该算法利用基于重要区域的目标颜色直方图统计模型对视频车辆目标进行建模,并将其应用于Kalman滤波更新中,通过采用MeanShift算法将Kalman滤波器引用到粒子滤波器当中,对车辆的运行轨迹进行校正,实现了局部线性滤波,实现了在保持跟踪系统整体上的非线性、非高斯性的同时,兼顾其局部的线性高斯特性。实验结果表明,本文方法与传统粒子滤波方法相比,即使在复杂的环境下,也能够较准确地对车辆进行跟踪。 Recently, video vehicle tracking as a key technology of intelligent transportation system(ITS) has got more attention. This paper introduces a video vehicle tracking algorithm based on Kalman and particle filter. The algorithm improves the traditional particle filter, whose non-linear and non-Gaussian may result in non-robustness of tracking process, the algorithm uses the targets color histogram statistical model based on the key regional to model video vehicle, and applies it to update Kalman filter. Then through the use of Mean Shift algorithm, the Kalman filter is added to the particle filter to calibrated the vehicle running tracking so that the experiment achieves a partial linear filtering, maintaining tracking system as a whole on the non-linear and non-Gaussian, and at the same time it takes into account the local characteristics of a linear Gaussian. Experimental results show that the proposed method in comparison with the traditional particle filtering can be more accurate on tracking of vehicles and ensure the robustness of performance in a complex environment.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第11期1615-1622,共8页 Journal of Image and Graphics
基金 辽宁省自然基金项目(20102123) 辽宁“百千万人才工程”基金项目(2008921036) 南京邮电学院图像处理与图像通信江苏省重点实验室开放基金项目(ZK207008)
关键词 视频车辆跟踪 粒子滤波 卡尔曼滤波 Mean SHIFT video vehicle tracking particle filter Kalman filter Mean Shift
  • 相关文献

参考文献14

  • 1Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 3(22): 266-280.
  • 2Bai Kejia, Liu Weiming. Improved Object Tracking with Particle Filter and Mean Shift [ C ]//Proceedings of IEEE International Conference on Automation and Logistics. Piscataway, N J: IEEE PRESS, 2007:431-435.
  • 3Robert T. Collins. Mean-shift blob tracking through scale space [ J]. IEEE Computer Society Conference on Computer Vis!on and Pattern Recognition, 2003, 2: 234-240.
  • 4查宇飞,毕笃彦.一种基于粒子滤波的自适应运动目标跟踪方法[J].电子与信息学报,2007,29(1):92-95. 被引量:19
  • 5Kailath T. The divergence and Bhattacharyya distance measures in signal selection [ J ]. IEEE Transactions on Communication Technologys, 1967,1 (15) : 52-60.
  • 6Van Willigenburg L G, De Koning W L. Temporal linear system structure[ J ]. IEEE Transactions on Automatic Control, 2008, 5(53): 1318-1323.
  • 7Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian bayesian state estimation [ J ]. lEE Proceedings on Radar and Signal Processing, 1993, 140 (2) : 107-113.
  • 8Merwe R, Doucet A, Freitas Nando de, et al. The unscented particle filter [ R ]. Cambridge , UK : Cambridge University, Engineering Department, 2000.
  • 9Shen C, Anton Van den Hengel, Dick A. Probabilistic multiple cue integration for particle filter based tracking [ C ]//Proceedings of the Vllth Digital hnage Computing Techniques and Applications. Sydney, Australia: Cslro Publishing, 2003 : 399- 408.
  • 10Doucet A, Godsill S J, Andrieu C. On sequential simulation- based methods for Bayesian filtering [J]. Statistics and Computing, 2000,10 ( 3 ) : 197-208.

二级参考文献7

  • 1Paragios N and Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. on Pattern Anal. Mach. Intell, 2000, 3(22): 262-280.
  • 2Arulampalam M, Maskell S, Gordon N, and Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. on Singal Processing, 2002,50(2):174-188.
  • 3Doucet A, Gordon N, and Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems. IEEE Trans. on Signal Processing, 2001, 49(3): 613-624.
  • 4Comaniciu D, Ramesh V, and Meer P. Real.time tracking of non-rigid objects using mean shift. IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, South Carolina. 2000, Ⅱ: 142-149.
  • 5Kailath T. The divergence and Bhattacharyya dstance measures in signal selection. IEEE Trans. on Commun.Technol, 1967, COM-15: 52-60.
  • 6P'erez P, Hue C, Vermaak J, and Gangnet M. Color-based probabilistic tracking. European Conference on Computer Vision. Copenhagen, Denmark. 2002, 1: 661-675.
  • 7Nummiaro K, Koller-Meier E, and Van Gool L. Object tracking with an adaptive color-based particle filter. First International Workshop on Generative-Model-Based Vision,in conjunction with ECCV'02.Copenhagen, Denmark, 2002:53-60.

共引文献18

同被引文献133

引证文献19

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部