期刊文献+

动态学习的非负矩阵分解算法

A dynamic learning algorithm based on non-negative matrix factorization
下载PDF
导出
摘要 对现有增量型非负矩阵分解算法存在的一些缺陷进行改进,给出了一个基于误差判断的增量算法有效性准则.在此基础上,利用增加样本前的非负矩阵分解结果进行增量分解初始化,提出了一种新的动态非负矩阵分解算法.在多个数据集上的实验结果表明该算法可以实现对基矩阵和编码矩阵的即时更新,且具有较低的计算复杂度,在处理动态数据集时,还可有效识别噪声点,是一个有效的动态分解算法. To improve the performance of the incremental non-negative matrix factorization algorithm,error estimation criteria for judging the effectiveness of the incremental algorithm was presented. Then,a new dynamic non-negative matrix factorization algorithm was proposed whereby incremental factorization was initialized with the already factorized matrices before adding new samples. Experimental results on a number of data sets showed that the proposed algorithm is capable of instantly updating both the base matrix and the code matrix. Another benefit of the method is that the computational complexity is relatively low. The proposed algorithm can also identify noise points when dealing with dynamic data. So it is a feasible and effective dynamic factorization algorithm.
出处 《智能系统学报》 2010年第4期320-326,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60805042)
关键词 非负矩阵分解 动态学习 初始化 误差准则 non-negative matrix factorization dynamic learning initialization error criteria
  • 相关文献

参考文献10

  • 1LEE D D,SEUNG H S.Learning the parts of objects by nonnegative matrix factorization[J].Nature,1999(401):788-791.
  • 2XU Wei,LU Xin,GONG Yihong.Document clustering based on non-negative matrix factorization[C] //Proceedings of the 26th Annual International ACM SIGIR Conference,Toronto,Canada,2003:267-273.
  • 3GUILLAMET D,VITRIA J.Nonnegative matrix factorization for face recognition[C] //Proc Conf Topics in Artificial Intelligence.Alberta,Canada,2002:336-344.
  • 4VIRTANEN T.Monaural sound source separation by non-negative matrix factorization with temporal continuity and sparseness criteria[J].IEEE Transactions on Audio,Speech,and Language Processing,2007,15(3):1066-1074.
  • 5BUCAK S S,GUNSEL B,GURSOY O.Incremental non-negative matrix factorization for dynamic background model-ing[C] //ICEIS International Workshop on Pattern Recognition in Information Systems.Funchal,Portugal,2007:107-116.
  • 6CAO Bin,SHEN Dou,SUN Jiantao,et al.Detect and track latent factors with online nonnegative matrix factorization[C] //The 20th International Joint Conference on Artificial Intelligence.Hyderabad,India,2007:2689-2694.
  • 7CHEN W S,PAN B B,FANG B,et al.A novel constraint non-negative matrix factorization criterion based incremental learning in face recognition[C] //Proceedings of International Conference on Wavelet Analysis and Pattern Recognition.Hong Kong,China,2008:292-297.
  • 8PETS Video Database[EB/OL].http://ftp.pets.rdg.ac.uk/.
  • 9DONOHO D,Stodden V.When does non-negative matrix factorization give a correct decomposition into parts?[C] //Proceedings of the Seventeenth Annual Conference on Neural Information Processing Systems.Vancouver and Whistler,Canada,2003:101-108.
  • 10LI T,DING C.The relationships among various nonnegative matrix factorization methods for clustering[C] //Sixth IEEE International Conference on Data Mining.Hong Kong,China,2006:362-371.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部