期刊文献+

遗传余代数与二次型

Hereditary Coalgebras and Quadratic Forms
下载PDF
导出
摘要 给出1类重要的遗传余代数——正规的广义路余代数,在余代数上定义了3种二次型,证明了在Gabriel箭图是局部有限的遗传余代数上定义的这3种二次型一致。 As generalization,the author proves that normal generalized path coalgebras are hereditary.Similar as the discussion about quadratic forms on hereditary algebras,the author defines three kinds quadratic forms on coalgebras and proves that they are the same when coalgebras,with local finite Gabriel quivers,are hereditary.
作者 陈利利
出处 《青岛科技大学学报(自然科学版)》 CAS 2010年第5期542-545,共4页 Journal of Qingdao University of Science and Technology:Natural Science Edition
关键词 遗传余代数 广义路余代数 二次型 generalized path coalgebra hereditary coalgebra quadratic form
  • 相关文献

参考文献8

  • 1Auslander M,Reiten I,Smal S. Representation Theory of Artin Algebras[M]. Cambridge: Cambridge University Press, 1995 : 49-70,294-302.
  • 2Chin W, Montgomery S. Basic coalgebra[J]. AMS/IP Studies in Adv Math,1997,4:41-47.
  • 3Nastasescu C, Torrecillas B, Zhang Y H. Hereditary coalgebras [J]. Communicationa In Algebra, 1996,24(4) : 1521-1528.
  • 4陈利利,李方.由箭图构造的对偶Hopf代数和量子群[J].数学物理学报(A辑),2009,29(2):505-516. 被引量:2
  • 5Li F. Characterization of left Artinian algebras through pseudo path algebras[J]. J Aust Math Soc, 2007,83 : 385-416.
  • 6李方,刘公祥.广义路余代数和广义对偶Gabriel定理[J].数学学报(中文版),2008,51(5):853-862. 被引量:2
  • 7Montgomery S. Indecomposable coalgebras,simple comodules and pointed hopf algebras[J]. Proceedings of the American Mathematical Society, 1995,123 (8) :2343-2351.
  • 8Simsom D. Path coalgebras of quivers with relations and tame-wild dichotomy for coalgebras [J]. Lecture Notes in Pure and Appl Math, 2004,236 : 465-492.

二级参考文献17

  • 1CHEN Xiaowu, HUANG Hualin & ZHANG Pu Department of Mathematics, University of Science and Technology of China, Hefei 230026, China,USTC Shanghai Institute for Advanced Studies, Shanghai 201315, China,Mathematical Section, the Abdus Salam ICTP, Strada Costiera 11, Trieste 34014, Italy,Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030, China.Dual Gabriel theorem with applications[J].Science China Mathematics,2006,49(1):9-26. 被引量:6
  • 2Auslander M, Reiten I, Smalo S O. Representation Theory of Artin Algebra. Cambridge: Cambridge University Press, 1995
  • 3Cibils C. A quiver quantum group. Commun Math Phys, 1993, 157:459-477
  • 4Cibils C, Rosso M. Hopf quivers. J Algebra, 2002, 254:241-251
  • 5Chen X W, Huang H L, Ye Y, Zhang P. Monomial Hopf algebra. J Algebra, 2004, 275:212-232
  • 6Chin W, Montgory S. Basic Coalgebras. AMS/IP Stud Adv Math, 1997, 4:41-47
  • 7Green E L, Solberg O. Basic Hopf algebras and quantum groups. Math Z, 1998, 229:45-76
  • 8Hall M. The Theroy of Groups. New York: Macmillan, 1959
  • 9Jacobson N. Basic Algebra I. San Francisco: W H Freeman and Company, 1974
  • 10Kargapolov M I, Merzljakov Ju I. Fundamentals of the Theory of Groups. Berlin, Heidelberg, New York: Springer-Verlag, 1979

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部