期刊文献+

基于变精度粗糙集的脱机手写体汉字识别 被引量:4

Off-line handwritten Chinese character recognition based on variable precision rough set
下载PDF
导出
摘要 文章为研究脱机手写体汉字识别问题,将汉字样本及其特征向量看作是一个信息系统,采用基于β近似依赖度的属性重要度定义作为启发式信息,设计出在变精度粗糙集模型下的特征属性近似约简算法,对手写体汉字信息系统中冗余特征属性进行约简,构建出脱机手写体汉字识别决策信息系统。识别过程中采用基于加权规则置信度的规则融合方法,进一步提高了脱机手写体汉字的可识别性和正确识别率。实验结果表明,该方法是有效可行的。 The Chinese character sample and its feature vector are considered as an information system to study the off-line handwritten Chinese character recognition.A heuristic algorithm of the attribute reduction in variable precision rough set is designed.The definition of attribute importance,which is based on β approximation dependence,is taken as heuristic information in the heuristic algorithm.The redundancy features of handwritten Chinese character are reduced by the heuristic algorithm to build up the off-line handwritten Chinese character recognition decision-making information system.Moreover,a kind of rules fusion method based on weighted rules confidence is proposed in the process of recognition to improve the identifiability and correct classification rate of handwritten Chinese character.The experiment results show that the method is feasible and effective.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第10期1493-1496,1505,共5页 Journal of Hefei University of Technology:Natural Science
关键词 变精度粗糙集 属性约简 手写体汉字识别 规则融合 variable precision rough set attribute reduction handwritten Chinese character recognition rule fusion
  • 相关文献

参考文献9

  • 1Ge Y,Huo Q,Feng Z D.Offline recognition of handwritten Chinese characters using Gabor features[C] //CDHMM Modeling and MCE Training,Proc of ICASSP'02.Orlando,Florida,USA,2002:1053—1056.
  • 2Dong Jianxiong,Krzyzak A.An improved handwritten Chinese character recognition system using support vector machine[J].Pattern Recognition Letters,2005,26(12):1849—1856.
  • 3朱小燕,史一凡.基于反馈的手写体字符识别方法的研究[J].计算机学报,2002,25(5):476-482. 被引量:18
  • 4Lin Xiaofan,Ding Xiaoqing,Chen Ming,et al.Adaptive confidence transform based classifier combination for Chinese character recognition[J].Pattern Recognition Letters,1998,19(10):975—988.
  • 5Pawlak Z.Rough sets[J].International Journal of Information and Computer Science,1982,11(5):341—356.
  • 6Ziarko W.Variable precision rough set model[J].Journal of Computer and System Science,1993,46(1):39—59.
  • 7An Aijun,Shan Ning.Discovering rules for water demand prediction:an enhanced rough-set approach[J].Engineering Applications of Artificial Intelligence,1996,9(6):645—653.
  • 8Wong S K M,Ziarko W.On optional decision rules in decision table[J].Bulletin of Polish Academy of Sciences,1985,33(11):693—696.
  • 9高伟,刘喜平.基于粗糙集的车牌字符识别方法[J].山西大学学报(自然科学版),2005,28(3):253-256. 被引量:6

二级参考文献15

  • 1郝红卫,戴汝为.人机结合的集成方法及其在字符识别中的应用[J].模式识别与人工智能,1996,9(1):10-20. 被引量:14
  • 2RAUS M,KREFT L. Reading care license plates by the use of artificial necural networks. Proceedings of IEEE 38th.Midwest Symposium on Cireuits and Systems[C]. 1995:538-541.
  • 3Garris M D, Wilson C L. Neural network-based systems for handprinted OCR applications. IEEE Trans Image Processing, 1998, 7(8):1097-1112
  • 4Zhu Xiao-Yan. Multiple neural networks model and its application in pattern recognition. In: Proc International Conference on Neural Information, Beijing, China, 1995. 996-969
  • 5Wang Song, Zhu Xiao-Yan. Multiple experts recognition system based on neural network. In:Proc International Conference on Pattern Recognition, Vienna, Austria, 1996. 545-548
  • 6Brows R M, Foy T H. Handprinted symbol recognition system. Pattern Recognition, 1988, 21(2):981-118
  • 7Huang Kai, Yan Hong. Off-line signature verification based on geometric feature extraction and neural network classification. Pattern Recognition, 1997, 30(1):9-17
  • 8Cheung A, Bennamoun M, Bergmann N M. Recognition-based arabic optical character recognition system. In: Proc IEEE International Conference on System, Man and Cybernetics, USA, 1998.4189-4194
  • 9Brows R M, Foy T H. Handprinted symbol recognition system. Pattern Recognition, 1988, 21(2):981-118
  • 10Kimura F, Shiridhar M. Handwritten numerical recognition based on multiple algorithms. Pattern Recognition, 1991, 24(10):969-983

共引文献22

同被引文献33

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部