摘要
文章针对移动通信公司客户的情况,为解决预测客户流失率时满意度模糊的问题,提出了通过使用语气算子、信息转换公式,使得模糊语言转化为精确概率,并将其整合到模糊贝叶斯网中,最终能够预测客户流失概率。实验证明,经过改进后的贝叶斯网,能够在一定程度上反映交流语言的模糊性,在信息模糊情况下能够较好地预测客户的流失情况。
In view of the fuzzy satisfaction problem in predicting the churn rate of Mobile Communications Company′s customers,the vague language is transformed into a precise probability through tone operator and information transformation formulas,and then integrated into the fuzzy Bayesian net,thus predicting the probability of customer churn.As practical results show,the improved Bayesian network reflects the ambiguity of communication language to a certain degree,and predicts the loss of customers more effectively in the ambiguous information situations.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第10期1567-1571,共5页
Journal of Hefei University of Technology:Natural Science
基金
国家自然科学基金资助项目(70801024)
国家自然科学基金重点资助项目(70631003)
教育部博士点基金资助项目(200803590007)
关键词
模糊贝叶斯网
语气算子
模糊集
模糊概率
fuzzy Bayesian net
tone operator
fuzzy set
fuzzy probability