期刊文献+

马铃薯SSR标记多重PCR反应体系优化研究 被引量:4

Multiplex PCR reaction system optimization with potato SSR marker
下载PDF
导出
摘要 以马铃薯品种克新18为试验材料,探讨了多重PCR反应体系主要成分、引物不同比例关系及退火温度对SSR标记扩增的影响。在不改变其他成分浓度的条件下,对PCR反应体系的4个组分(Taq酶、MgCl2、模板DNA、dNTPs)进行浓度或用量梯度试验;利用正交设计L(934)对反应体系的4对引物组合(STM0014、Pat、SSI、UGP)在3个水平上进行优化;最终确立了马铃薯SSR标记多重PCR反应优化体系,总体积为20μL;2.5μL 25 mmol.L-1 MgCl2,0.6μL 10 mmol.L-1 dNTPs,Taq酶0.8 U,模板DNA 80 ng;4 mmol.L-1的4对引物之间的用量比为2:1:2:3,退火温度为54.7℃。优化后的反应体系重复性好,扩增结果稳定可靠,能够明显区分不同的马铃薯品种。为进一步探讨马铃薯品种资源遗传多样性、构建DNA指纹图谱打下了坚实的基础。 Potato variety Kexin18 was used as testing materials in the research to study the impacts from main components in multiplex PCR reaction system, different primer ratios and annealing temperature in SSR marker amplification. Concentration and gradient experiments for four components (Taq enzyme, MgC12, DNA template and dNTPs) in PCR reaction system were used in the research with the concentration of the other component remain the same; the orthogonal design 1_9(34) was applied in the optimization of four primer combinations (STM0014, Pat, SSI, UGP) in the reaction system at three levels; the temperature gradient selection was used to find out the optimum annealing temperature for the primer. The optimized multiplex PCR reaction system of potato SSR marker with a total volume of 20 μL: 2.5 μL 25 mmol. L-1 MgCI2, 0.6 μL 10 mmol. L-1 dNTPs, 0.8 U Taq, 80 ng DNA template was ultimately established through the comparison and analysis of test results; the ratio of four pairs of 4 mmol. L-1 primers was 2:1 : 2:3, and the annealing temperature was 54.7 ℃. The optimized reaction system was of good reproducibility; and the stable and reliable amplification results was able to clearly distinguish different potato varieties. This research built the solid foundation for the further study of genetic diversity of potato germplasm and construction of DNA fingerprint.
出处 《东北农业大学学报》 CAS CSCD 北大核心 2010年第10期17-23,共7页 Journal of Northeast Agricultural University
基金 黑龙江省科技厅国际合作项目(WC05B08)
关键词 马铃薯 SSR标记 多重PCR反应体系 优化 potato SSR marker multiplex PCR reaction system optimization
  • 相关文献

参考文献14

  • 1Gupta P K, Rustgi S, Sharma S, et al. Transferable EST-SSRs markers for the study of polymorphism and genetic diversity in bread wheat[J]. Mol Gen Genomics, 2003, 270:315-323.
  • 2Powell W, Machray G C, Provan J. Polymorphism revealed by simple sequence repeats[J]. Trends Plant Science, 1996( 1 ): 215-222.
  • 3盛云燕,栾非时,陈克农.甜瓜SSR标记遗传多样性的研究[J].东北农业大学学报,2006,37(2):165-170. 被引量:31
  • 4杨迪菲,秦智伟,王桂玲.黄瓜SSR-PCR反应体系的优化[J].东北农业大学学报,2006,37(5):619-623. 被引量:18
  • 5张东,舒群,滕元文,仇明华,鲍露,胡红菊.中国红皮砂梨品种的SSR标记分析[J].园艺学报,2007,34(1):47-52. 被引量:27
  • 6Chamberlain J S, Gibbs R A, Rainer J E, et al. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification [J] . Nucleic Acids Research, 1988, 16 (23): 11141 - 11156.
  • 7Ma W, Zhang W, Gale K R. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat[J]. Euphytica, 2003, 134: 51-60.
  • 8Henegariu O, Heerema N A, Dlouhy S R, et al. Multiplex PCR: critical parameters and step-by-step protocol [J]. Biotechniques, 1997, 3(3): 504-511.
  • 9Markoulatos P, Siafakas N, Moncany M. Multiplex polymerase chain reaction: A practical approach [J]. Journal of Clinical Laboratory Analysis, 2002, 16(1): 47-51.
  • 10Schoske R, Vallone P M, Ruitberg C M ,et al. Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci [J]. Analytical and Bioanalytical Chemistry, 2003, 375(3): 333-343.

二级参考文献37

共引文献71

同被引文献71

  • 1肖小余,王玉平,张建勇,李仕贵,荣廷昭.四川省主要杂交稻亲本的SSR多态性分析和指纹图谱的构建与应用[J].中国水稻科学,2006,20(1):1-7. 被引量:111
  • 2邸宏,陈伊里,金黎平.RAPD和AFLP标记分析中国马铃薯主要品种的遗传多样性[J].作物学报,2006,32(6):899-904. 被引量:46
  • 3Brown C, Wrolstad R, Durst R, et al. Breeding studies in potatoes containing high concentrations of anthocyanins[J]. American Jottmal of Potato Research, 2003, 80(4): 241-249.
  • 4Reyes L F, Cisneros-Zevallos L. Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.)[J]. Food Chemistry, 2007, 100(3): 885-894.
  • 5Reyes L, J Miller, Cisneros-Zevallos L. Antioxidant capacity, anthocyanins and total phenolics in purple- and red-fleshed potato genotypes[J]. American Journal of Potato Research, 2005, 82(4): 271-277.
  • 6Stushnoff C, Holm D, Thompson M D, et al. Antioxidant properties of cultivars and selections from the colorado potato breeding program[J]. American Journal of Potato Research, 2008, 85(4): 267-276.
  • 7Veilleux R E, Shen L Y, Paz M M. Analysis of the genetic composition of anther-derived potato by randomly amplified polymorphic DNA and simple sequence repeats[J]. Genome, 1995, 38(6): 1153-1162.
  • 8Provan J, Powell W, Waugh R. Microsatellite analysis of relationships within cultivated potato[J]. Theoretical and Applied Genetics, 1996, 92(8): 1078-1084.
  • 9Rocha E A, Paiva L V, Carvalho H H, et al. Molecular characterization and genetic diversity of potato cultivars using SSR and RAPD markers[J]. Crop Breeding and Applied Biotechnology, 2010(lOk 204-210.
  • 10de Galarreta J, Barandalla L, Rios D J, et al. Genetic relationships among local potato cultivars from Spain using SSR markers[J]. Genetic Resources and Crop Evolution, 2011, 58(3): 383-395.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部